207 research outputs found
The Effect of Acetaminophen on Oxidative Modification of Low-Density Lipoproteins in Hypercholesterolemic Rabbits
Oxidative modification of low-density lipoproteins (LDL) contributes to the pathology of atherosclerosis. Antioxidants may protect LDL against oxidative modification. Acetaminophen, a widely used analgesic and antipyretic agent, has significant antioxidant properties. However, there is little evidence to suggest that acetaminophen acts as an antioxidant for LDL oxidation in vivo. In this study, we investigated the in vivo effect of acetaminophen on LDL oxidation in hypercholesterolemic rabbits. The oxidative modification of LDL was identified by conjugated dienes and thiobarbituric acid-reactive substances (TBARS). In the cholesterol group which rabbits were fed a diet contained 1% g cholesterol for 8 weeks, TBARS contents and conjugated diene levels in the plasma and isolated LDL samples significantly increased compared with the control rabbits (p<0.05). However, in the cholesterol + acetaminophen group, the TBARS contents and conjugated diene levels were significantly lower than that of the cholesterol group (p<0.05). The results from in vitro studies also demonstrated that the LDL isolated from serum was oxidized by Cu++ ions and this oxidation reduced in the presence of acetaminophen. The reduced oxidative modification of LDL by acetaminophen may be of therapeutic value in preventing the development and progression of atherosclerosis
Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis
Earlier we have established a carbazole alkaloid (mahanine) isolated from an Indian edible medicinal
plant as an anticancer agent with minimal effect on normal cells. Here we report for the first time that
mahanine-treated drug resistant and sensitive virulent Leishmania donovani promastigotes underwent apoptosis through phosphatidylserine externalization, DNA fragmentation and cell cycle arrest. An early induction of reactive oxygen species (ROS) suggests that the mahanine-induced apoptosis was mediated by oxidative stress. Additionally, mahanine-treated Leishmania-infected macrophages exhibited anti-amastigote activity by nitric oxide (NO)/ROS generation along with suppression of uncoupling protein 2 and Th1-biased cytokines response through modulating STAT pathway. Moreover, we have demonstrated the interaction of a few antioxidant enzymes present in parasite with mahanine
through molecular modeling. Reduced genetic and protein level expression of one such enzyme namely ascorbate peroxidase was also observed in mahanine-treated promastigotes. Furthermore, oral administration of mahanine in acute murine model exhibited almost complete reduction of parasite burden, upregulation of NO/iNOS/ROS/IL-12 and T cell proliferation. Taken together, we have established a new function of mahanine as a potent antileishmanial molecule, capable of inducing ROS and exploit antioxidant enzymes in parasite along with modulation of host’s immune response which
could be developed as an inexpensive and nontoxic therapeutics either alone or in combination
Epitope mapping and characterization of 4-hydroxy-2-nonenal modified-human serum albumin using two different polyclonal antibodies
Lipids are susceptible to damage by reactive oxygen species, and from lipid oxidation reactions many short chain lipid peroxidation products can be formed. 4-Hydroxy-2-nonenal (HNE) is one of the most abundant and cytotoxic lipid oxidation products and is known to form covalent adducts with nucleophilic amino acids of proteins. HNE-modified proteins have value as biomarkers and can be detected by antibody-based techniques, but most commercially available antibodies were raised against HNE-keyhole limpet hemocyanin. We used HNE-treated human serum albumin (HSA) to raise sheep antiserum and report for the first time the use of covalently modified peptide arrays to assess epitope binding of antibodies (Abs). Peptide arrays covering the sequence of HSA and treated post peptide synthesis with HNE were used to compare the different binding patterns of a commercial polyclonal antibody (pAb) raised against HNE-treated KLH and an in-house anti-HNE enriched pAb. The results were correlated with analysis of HNE-modified HSA by high-resolution tandem mass spectrometry. Both anti-HNE pAbs were found to bind strongly to eight common peptides on the HNE-treated HSA membranes, suggesting that HNE adducts per se induced an immune response in both cases even though different immunogens were used. Both antibodies bound with the highest affinity to the peptide 365DPHECYAKVFDEFKPLV381, which contains K378 and was also shown to be modified by the mass spectrometry analysis. Overall, the commercial anti-HNE pAb showed better specificity, recognizing nine out of the eleven adducts found by MS/MS, while the in-house enriched pAb only recognizes six. Nevertheless, the in-house pAb recognized specific peptides that were not recognized by the commercial pAb, which suggests the presence of clones uniquely specific to HNE adducts on HSA
- …