446 research outputs found

    A Solitonic Approach to Holographic Nuclear Physics

    Full text link
    We discuss nuclear physics in the Sakai-Sugimoto model in the limit of large number NcN_c of colors and large 't Hooft coupling λ\lambda. In this limit the individual baryons are described by classical solitons whose size is much smaller than the typical distance at which they settle in a nuclear bound state. We can thus use the linear approximation outside the instanton cores to compute the interaction potential. We find the classical geometry of nuclear bound states for baryon number up to eight. One of the interesting features that we find is that holographic nuclear physics provides a natural description for lightly bound states when λ\lambda is large. For the case of two nuclei, we also find the topology and metric of the manifold of zero modes and, quantizing it, we find that the ground state can be identified with the deuteron state. We discuss the relations with other methods in the literature used to study Skyrmions and holographic nuclear physics. We discuss 1/Nc1/{N_c} and 1/λ1/\lambda corrections and the challenges to overcome to reach the phenomenological values to fit with real QCD.Comment: 47 pages, 7 figures. v2: typos correcte

    Caratterizzazione dei Paesaggi Agricoli Tradizionali italiani mediante modelli eco-idrologici e telerilevamento

    Get PDF
    L’ecoidrologia è la scienza fondamentale per la comprensione del legame esistente tra le dinamiche degli ecosistemi e il ciclo dell'acqua. L'obiettivo del presente lavoro di ricerca è la caratterizzazione da un punto di vista quantitativo dei processi eco-idrologici che regolano gli scambi di massa e di energia nel sistema suolo-pianta-atmosfera all’interno dei PAT (Paesaggi Agricoli Tradizionali) delle Ecoregioni d'Italia, mettendo così in luce l'impatto che il loro comportamento eco-idrologico esercita sulla multifunzionalità di tali sistemi (dalla produzione agraria al grado di protezione del territorio) e definendo alcuni “indicatori eco-idrologici” per le tipologie di paesaggio analizzate. Lo studio, condotto nell’ambito del progetto PRIN 2010-2011 sui “Paesaggi Agrari Tradizionali d’Italia”, ha riguardato l’estrazione di due tipologie di indicatori; un primo gruppo, ottenuto da dati di Osservazione della Terra (serie multi temporale con frequenza complessiva di 8 giorni dell’indice di vegetazione NDVI composite a 16 giorni, derivato dal sensore MODIS Terra ed Aqua) per caratterizzare la dinamica vegetazionale (vigore delle coperture vegetali, variazioni temporali (inter-annuali), indici bio-metrici caratteristici, stabilità nel tempo di particolari indici di sviluppo, statistiche vegetazionali). Un secondo gruppo di indicatori è stato derivato dall’applicazione di un modello eco-idrologico, per la stima dei flussi di evaporazione e di traspirazione (stimati mediante l’applicazione del modello P-M FAO56), della produzione primaria lorda (GPP) e netta (NPP), dell’insorgenza di condizioni di stress idrico e del contenuto idrico nel suolo (soil water content, SWC). Il modello eco-idrologico prende in conto come input forcing le condizioni di copertura vegetale (derivanti dal primo gruppo di eco-indicatori), il dato meteorologico (derivato da dati di ri-analisi ERA-Interim), le caratteristiche idrauliche del suolo, derivate da semplici funzioni di pedo-trasferimento (PTF) applicate ai prodotti Topsoil physical properties e Soil Organic Carbon Content dell’European Soil Data Centre (ESDAC). Alcuni parametri del modello sono stati derivati dal confronto con misure sperimentali nei siti di Castelvetrano (Oliveto in provincia di Trapani, PAT) e Brisighella (Actinidia in provincia di Ravenna, non-PAT)., Infine un ultimo indicatore è stato valutato con riferimento ai processi di erosione del suolo, in base al modello “RUSLE 2015” del JRS. I risultati ottenuti con risoluzione temporale giornaliera per il periodo 2003-2015 sono stati aggregati al fine di sintetizzare in maniera più efficace la risposta dei PAT nell’ambito dei processi eco-idrologici con lo scopo di migliorare la classificazione e la caratterizzazione dei PAT, nonché per individuare strategie di pianificazione e gestione del paesaggio

    Estimation of Leaf Area Index Using DEIMOS-1 Data: Application and Transferability of a Semi-Empirical Relationship between two Agricultural Areas

    Get PDF
    This work evaluates different procedures for the application of a semi-empirical model to derive time-series of Leaf Area Index (LAI) maps in operation frameworks. For demonstration, multi-temporal observations of DEIMOS-1 satellite sensor data were used. The datasets were acquired during the 2012 growing season over two agricultural regions in Southern Italy and Eastern Austria (eight and five multi-temporal acquisitions, respectively). Contemporaneous field estimates of LAI (74 and 55 measurements, respectively) were collected using an indirect method (LAI-2000) over a range of LAI values and crop types. The atmospherically corrected reflectance in red and near-infrared spectral bands was used to calculate the Weighted Difference Vegetation Index (WDVI) and to establish a relationship between LAI and WDVI based on the CLAIR model. Bootstrapping approaches were used to validate the models and to calculate the Root Mean Square Error (RMSE) and the coefficient of determination (R2) between measured and predicted LAI, as well as corresponding confidence intervals. The most suitable approach, which at the same time had the minimum requirements for fieldwork, resulted in a RMSE of 0.407 and R2 of 0.88 for Italy and a RMSE of 0.86 and R2 of 0.64 for the Austrian test site. Considering this procedure, we also evaluated the transferability of the local CLAIR model parameters between the two test sites observing no significant decrease in estimation accuracies. Additionally, we investigated two other statistical methods to estimate LAI based on: (a) Support Vector Machine (SVM) and (b) Random Forest (RF) regressions. Though the accuracy was comparable to the CLAIR model for each test site, we observed severe limitations in the transferability of these statistical methods between test sites with an increase in RMSE up to 24.5% for RF and 38.9% for SVM

    Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy

    Get PDF
    Lack of accurate and up-to-date data associated with irrigated areas and related irrigation amounts is hampering the full implementation and compliance of the Water Framework Directive (WFD). In this paper, we describe the framework that we developed and implemented within the DIANA project to map the actual extent of irrigated areas in the Campania region (Southern Italy) during the 2018 irrigation season. For this purpose, we considered 202 images from the Harmonized Landsat Sentinel-2 (HLS) products (57 images from Landsat 8 and 145 images from Sentinel-2). Such data were preprocessed in order to extract a multitemporal Normalized Difference Vegetation Index (NDVI) map, which was then smoothed through a gap-filling algorithm. We further integrated data coming from high-resolution (4 km) global satellite precipitation Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) products. We collected an extensive ground truth in the field represented by 2992 data points coming from three main thematic classes: bare soil and rainfed (class 0), herbaceous (class 1), and tree crop (class 2). This information was exploited to generate irrigated area maps by adopting a machine learning classification approach. We compared six different types of classifiers through a cross-validation approach and found that, in general, random forests, support vector machines, and boosted decision trees exhibited the best performances in terms of classification accuracy and robustness to different tested scenarios. We found an overall accuracy close to 90% in discriminating among the three thematic classes, which highlighted promising capabilities in the detection of irrigated areas from HLS products

    Estimation of evapotranspiration and crop coefficients of tendone vineyards using multi-sensor remote sensing data in a mediterranean environment

    Get PDF
    The sustainable management of water resources plays a key role in Mediterranean viticulture, characterized by scarcity and competition of available water. This study focuses on estimating the evapotranspiration and crop coefficients of table grapes vineyards trained on overhead "tendone" systems in the Apulia region (Italy). Maximum vineyard transpiration was estimated by adopting the "direct" methodology for ETp proposed by the Food and Agriculture Organization in Irrigation and Drainage Paper No. 56, with crop parameters estimated from Landsat 8 and RapidEye satellite data in combination with ground-based meteorological data. The modeling results of two growing seasons (2013 and 2014) indicated that canopy growth, seasonal and 10-day sums evapotranspiration values were strictly related to thermal requirements and rainfall events. The estimated values of mean seasonal daily evapotranspiration ranged between 4.2 and 4.1 mm·d-1, while midseason estimated values of crop coefficients ranged from 0.88 to 0.93 in 2013, and 1.02 to 1.04 in 2014, respectively. The experimental evapotranspiration values calculated represent the maximum value in absence of stress, so the resulting crop coefficients should be used with some caution. It is concluded that the retrieval of crop parameters and evapotranspiration derived from remotely-sensed data could be helpful for downscaling to the field the local weather conditions and agronomic practices and thus may be the basis for supporting grape growers and irrigation managers

    Esophageal testing: What we have so far

    Get PDF
    Gastroesophageal reflux disease (GERD) is a common disorder of the gastrointestinal tract. In the last few decades, new technologies have evolved and have been applied to the functional study of the esophagus, allowing for the improvement of our knowledge of the pathophysiology of GERD. High-resolution manometry (HRM) permits greater understanding of the function of the esophagogastric junction and the risks associated with hiatal hernia. Moreover, HRM has been found to be more reproducible and sensitive than conventional water-perfused manometry to detect the presence of transient lower esophageal sphincter relaxation. Esophageal 24-h pH-metry with or without combined impedance is usually performed in patients with negative endoscopy and reflux symptoms who have a poor response to anti-reflux medical therapy to assess esophageal acid exposure and symptom-reflux correlations. In particular, esophageal 24-h impedance and pH monitoring can detect acid and non-acid reflux events. EndoFLIP is a recent technique poorly applied in clinical practice, although it provides a large amount of information about the esophagogastric junction. In the coming years, laryngopharyngeal symptoms could be evaluated with up and coming non-invasive or minimally invasive techniques, such as pepsin detection in saliva or pharyngeal pH-metry. Future studies are required of these techniques to evaluate their diagnostic accuracy and usefulness, although the available data are promising

    Retrieval of evapotranspiration from sentinel-2: Comparison of vegetation indices, semi-empirical models and SNAP biophysical processor approach

    Get PDF
    Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this studyperformeda comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived fromFAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas

    Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy

    Get PDF
    Abstract The occurrence of water shortages ascribed to projected climate change, especially in the Mediterranean region, fosters the interest in remote sensing (RS) applications to optimize water use in agriculture. Remote sensing evapotranspiration and water demand estimation over large cultivated areas were used to manage irrigation to minimize losses during the crop growing cycle. The research aimed to explore the potential of the MultiSpectral Instrument (MSI) sensor on board Sentinel-2A to estimate crop parameters, mainly surface albedo (α) and Leaf Area Index (LAI) that influence the dynamics of potential evapotranspiration (ETp) and Irrigation Water Requirements (IWR) of processing tomato crop (Solanum lycopersicum L.). Maximum tomato ETp was calculated according to the FAO Penman-Monteith equation (FAO-56 PM) using appropriate values of canopy parameters derived by processing Sentinel-2A data in combination with daily weather information. For comparison, we used the actual crop evapotranspiration (ETa) derived from the soil water balance (SWB) module in the Environmental Policy Integrated Climate (EPIC) model and calibrated with in-situ Root Zone Soil Moisture (RZSM). The experiment was set up in a privately-owned farm located in the Tarquinia irrigation district (Central Italy) during two growing seasons, within the framework of the EU Project FATIMA (FArming Tools for external nutrient Inputs and water Management). The results showed that canopy growth, maximum evapotranspiration (ETp) and IWR were accurately inferred from satellite observations following seasonal rainfall and air temperature patterns. The net estimated IWR from satellite observations for the two-growing seasons was about 272 and 338 mm in 2016 and 2017, respectively. Such estimated requirement was lower compared with the actual amount supplied by the farmer with sprinkler and drip micro-irrigation system in both growing seasons resulting in 364 (276 mm drip micro-irrigation, and 88 mm sprinkler) and 662 (574 mm drip micro-irrigation, and 88 mm sprinkler) mm, respectively. Our findings indicated the suitability of Sentinel-2A to predict tomato water demand at field level, providing useful information for optimizing the irrigation over extended farmland

    Epitaxial multilayers of alkanes on two-dimensional black phosphorus as passivating and electrically insulating nanostructures

    Get PDF
    © The Royal Society of Chemistry. Mechanically exfoliated two-dimensional (2D) black phosphorus (bP) is epitaxially terminated by monolayers and multilayers of tetracosane, a linear alkane, to form a weakly interacting van der Waals heterostructure. Atomic force microscopy (AFM) and computational modelling show that epitaxial domains of alkane chains are ordered in parallel lamellae along the principal crystalline axis of bP, and this order is extended over a few layers above the interface. Epitaxial alkane multilayers delay the oxidation of 2D bP in air by 18 hours, in comparison to 1 hour for bare 2D bP, and act as an electrical insulator, as demonstrated using electrostatic force microscopy. The presented heterostructure is a technologically relevant insulator-semiconductor model system that can open the way to the use of 2D bP in micro-and nanoelectronic, optoelectronic and photonic applications
    • …
    corecore