2,177 research outputs found

    Limits on Pop III star formation with the most iron-poor stars

    Get PDF
    We study the impact of star-forming mini-haloes, and the Initial Mass Function (IMF) of Population III (Pop III) stars, on the Galactic halo Metallicity Distribution Function (MDF) and on the properties of C-enhanced and C-normal stars at [Fe/H]<-3. For our investigation we use a data-constrained merger tree model for the Milky Way formation, which has been improved to self-consistently describe the physical processes regulating star-formation in mini-haloes, including the poor sampling of the Pop III IMF. We find that only when star-forming mini-haloes are included the low-Fe tail of the MDF is correctly reproduced, showing a plateau that is built up by C-enhanced metal-poor (CEMP) stars imprinted by primordial faint supernovae. The incomplete sampling of the Pop III IMF in inefficiently star-forming mini-haloes (< 10−310^{-3} M⊙M_\odot/yr) strongly limits the formation of Pair Instability Supernovae (PISNe), with progenitor masses mpopIIIm_{\rm popIII}=[140-260] M⊙M_\odot, even when a flat Pop III IMF is assumed. Second-generation stars formed in environments polluted at >50% level by PISNe are thus extremely rare, corresponding to ≈\approx 0.25% of the total stellar population at [Fe/H]<-2, which is consistent with recent observations. The low-Fe tail of the MDF strongly depends on the Pop III IMF shape and mass range. Given the current statistics, we find that a flat Pop III IMF model with mpopIIIm_{\rm popIII}=[10-300] M⊙M_\odot is disfavoured by observations. We present testable predictions for Pop III stars extending down to lower masses, with mpopIIIm_{\rm popIII}=[0.1-300] M⊙M_\odot.Comment: 15 pages, 11 figures. Accepted for publication in MNRAS. The only change is the correction of a mistake in the list of author

    Manejo de corós em cereais de inverno.

    Get PDF
    bitstream/item/84161/1/CNPT-COM.-TEC.-3-97.pd

    Initial mass function of intermediate mass black hole seeds

    Get PDF
    We study the Initial Mass Function (IMF) and host halo properties of Intermediate Mass Black Holes (IMBH, 10^{4-6} Msun) formed inside metal-free, UV illuminated atomic cooling haloes (virial temperature T_vir > 10^4 K) either via the direct collapse of the gas or via an intermediate Super Massive Star (SMS) stage. We achieve this goal in three steps: (a) we derive the gas accretion rate for a proto-SMS to undergo General Relativity instability and produce a direct collapse black hole (DCBH) or to enter the ZAMS and later collapse into a IMBH; (b) we use merger-tree simulations to select atomic cooling halos in which either a DCBH or SMS can form and grow, accounting for metal enrichment and major mergers that halt the growth of the proto-SMS by gas fragmentation. We derive the properties of the host halos and the mass distribution of black holes at this stage, and dub it the "Birth Mass Function"; (c) we follow the further growth of the DCBH due to accretion of leftover gas in the parent halo and compute the final IMBH mass.We consider two extreme cases in which minihalos (T_vir < 10^4 K) can (fertile) or cannot (sterile) form stars and pollute their gas leading to a different IMBH IMF. In the (fiducial) fertile case the IMF is bimodal extending over a broad range of masses, M= (0.5-20)x10^5 Msun, and the DCBH accretion phase lasts from 10 to 100 Myr. If minihalos are sterile, the IMF spans the narrower mass range M= (1-2.8)x10^6 Msun, and the DCBH accretion phase is more extended (70-120 Myr). We conclude that a good seeding prescription is to populate halos (a) of mass 7.5 < log (M_h/Msun) < 8, (b) in the redshift range 8 < z < 17, (c) with IMBH in the mass range 4.75 < log (M_BH/Msun) < 6.25.Comment: MNRAS, in press. Comments welcom

    The Classical notion of competition revisited

    Get PDF
    The paper seeks to fill a lacuna within classical economics concerning the process of market price determination in situations of market disequilibrium. To this aim, first we distinguish the classical notion of free competition from the Walrasian notion of perfect competition and we argue that the latter is beset with some theoretical difficulties alien to the former. Second, we reconstruct in some detail Smith\u2019s and Marx\u2019s views concerning market price determination and show that Marx\u2019s extensive use of metaphors and numerical examples foreshadows the modern taxonomy of buyers\u2019 market, sellers\u2019 market, and mixed strategy equilibrium in the capacity space of a standard Bertrand duopoly model. Finally, we highlight similarities and differences between the classical notion of competition and contemporary Bertrand competition models

    Observações sobre a biologia de Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera-Noctuidae) em trigo.

    Get PDF
    bitstream/item/65942/1/CPAO-COM.-TEC.-8-82.pd

    Ocorrência de Megascelis satrapa e avaliação de inseticidas para seu controle, em soja.

    Get PDF
    bitstream/item/133988/1/ID12230-1989-1990sojaresultados-p73-75.pdfTrabalho apresentado na XVIII Reunião de Pesquisa de Soja da Região Sul, Passo Fundo, 1990

    Galaxy formation with radiative and chemical feedback

    Get PDF
    Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We discuss the merits and limitations of the first release of GAMESH, also opening new directions to a full implementation of feedback processes in galaxy formation models by combining semi-analytic and numerical methods.Comment: This version has coloured figures not present in the printed version. Submitted to MNRAS, minor revision
    • …
    corecore