182 research outputs found

    Structural transformations in protein crystals caused by controlled dehydration

    Get PDF
    Recent experiments in this laboratory on structural transformations caused by controlled dehydration of protein crystals have been reviewed. X-ray diffraction patterns of the following crystals have been examined under varying conditions of environmental humidity in the relative humidity range of 100-75%: a new crystal form of bovine pancreatic ribonuclease A grown from acetone solution in tris buffer (I), the well-known monoclinic form of the protein grown from aqueous ethanol (II), the same form grown from a solution of 2-methyl pentan-2,4-diol in phosphate buffer (III), tetragonal (IV), orthorhombic (V), monoclinic (VI) and triclinic (VII) hen egg white lysozyme, porcine 2 Zn insulin (VIII), porcine 4 Zn insulin (IX) and the crystals of concanavalin A(X). I, II, IV, V and VI undergo one or more transformations as evidenced by discontinuous changes in the unit cell dimensions, the diffraction pattern and the solvent content. Such water-mediated transformations do not appear to occur in the remaining crystals in the relative humidity range explored. The relative humidity at which the transformation occurs is reduced when 2-methyl pentan-2,4-diol is present in the mother liquor. The transformations are affected by the crystal structure but not by the amount of solvent in the crystals. The X-ray investigations reviewed here and other related investigations emphasize the probable importance of water-mediated transformations in exploring hydration of proteins and conformational transitions in them

    Spin-gap behaviour in the 2-leg spin-ladder BiCu2PO6

    Full text link
    We present magnetic suscceptibility and heat capacity data on a new S=1/2 two-leg spin ladder compound BiCu2PO6. From our susceptibility analysis, we find that the leg coupling J1/k_B is ~ 80 K and the ratio of the rung to leg coupling J2/J1 ~ 0.9. We present the magnetic contribution to the heat capacity of a two-leg ladder. The spin-gap Delta/k_B =3 4 K obtained from the heat capacity agrees very well with that obtained from the magnetic susceptibility. Significant inter-ladder coupling is suggested from the susceptibility analysis. The hopping integrals determined using Nth order muffin tin orbital (NMTO) based downfolding method lead to ratios of various exchange couplings in agreement with our experimental data. Based on our band structure analysis, we find the inter-ladder coupling in the bc-plane J2 to be about 0.75J1 placing the compound presumably close to the quantum critical limit.Comment: 8 pages, 5 figure

    Implementation of Decoy Deception based Detection System for Ransomware Attack

    Get PDF
    Ransomware poses a dangerous threat to  cybersecurity. Data as well as rights owned by the user are  adversely impacted. The situation has become considerably  more critical as a result of the emergence of new ransomware  varieties and Ransomware-as-a-Service. In this paper, we  presented a novel deception-based and behaviour-based  method for real-time ransomware detection. In order to avoid  any loss before ransomware is discovered, we build pretend  files and directories for nefarious behaviours. We conducted a  pilot study using Locky, and the results demonstrate the  effectiveness of our strategy with little system resource usage  and geographical cost.&nbsp

    Role Based Secure Data Access Control for Cost Optimized Cloud Storage Using Data Fragmentation While Maintaining Data Confidentiality

    Get PDF
    The paper proposes a role-based secure data access control framework for cost-optimized cloud storage, addressing the challenge of maintaining data security, privacy, integrity, and availability at lower cost. The proposed framework incorporates a secure authenticity scheme to protect data during storage or transfer over the cloud. The framework leverages storage cost optimization by compressing high-resolution images and fragmenting them into multiple encrypted chunks using the owner's private key. The proposed approach offers two layers of security, ensuring that only authorized users can decrypt and reconstruct data into its original format. The implementation results depicts that the proposed scheme outperforms existing systems in various aspects, making it a reliable solution for cloud service providers to enhance data security while reducing storage costs

    Drug utilization study in a neonatal intensive care unit of a government tertiary care hospital in Western Maharashtra

    Get PDF
    Background: Presently drug utilization studies (DUS) are in an evolving era. Current literature search has shown paucity of epidemiological studies in the field of paediatric pharmacology. Hence the present study was designed to assess the drug utilization pattern in neonatal intensive care unit to improvise the current prescription practices, if required and to determine areas in neonatal pharmacology in need of further research.Methods: A prospective, observational study spanned for a period of one year from January 2015 to December 2015 was conducted at the neonatal intensive care unit (NICU), Government teaching tertiary care hospital, Maharashtra. Data of prescribed drugs was collected. WHO prescribing indicators were used for evaluating DUS. Assessment of exposure rates of different class of drugs in different gestational age groups was done. Data were analysed using descriptive studies.Results: Data of 205 neonates, showed male preponderance (53.17%) over female neonates (46.83%). With regard to the gestational age, 47.31% were term, 52.68% preterm. Average number of drugs per encounter was 6.69. 76.29% drugs were prescribed by generic name and 69.80 % drugs were from IAP list of essential medicines for children. Mean drug use was 6.23ยฑ3.34 per patient. Most common class of drug to which neonates were exposed was antibiotics (96.10%) and amikacin topped the list with exposure rate of 91.22%.Conclusions: The present study substantiates the need for implementation of institutional antibiotic policies, awareness regarding IAP list of essential drugs for children, prescription by generic name and rational drug use

    Structural Ordering of Disordered Ligand-Binding Loops of Biotin Protein Ligase into Active Conformations as a Consequence of Dehydration

    Get PDF
    Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of โˆผ3.5 ร… in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action

    Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human papillomavirus (HPV) vaccines based on major capsid protein L1 are licensed in over 100 countries to prevent HPV infections. The yeast-derived recombinant quadrivalent HPV L1 vaccine, GARDASIL(R), has played an important role in reducing cancer and genital warts since its introduction in 2006. The L1 proteins self-assemble into virus-like particles (VLPs).</p> <p>Results</p> <p>VLPs were subjected to post-purification disassembly and reassembly (D/R) treatment during bioprocessing to improve VLP immunoreactivity and stability. The post-D/R HPV16 VLPs and their complex with H16.V5 neutralizing antibody Fab fragments were visualized by cryo electron microscopy, showing VLPs densely decorated with antibody. Along with structural improvements, post-D/R VLPs showed markedly higher antigenicity to conformational and neutralizing monoclonal antibodies (mAbs) H16.V5, H16.E70 and H263.A2, whereas binding to mAbs recognizing linear epitopes (H16.J4, H16.O7, and H16.H5) was greatly reduced.</p> <p>Strikingly, post-D/R VLPs showed no detectable binding to H16.H5, indicating that the H16.H5 epitope is not accessible in fully assembled VLPs. An atomic homology model of the entire</p> <p>HPV16 VLP was generated based on previously determined high-resolution structures of bovine papillomavirus and HPV16 L1 pentameric capsomeres.</p> <p>Conclusions</p> <p>D/R treatment of HPV16 L1 VLPs produces more homogeneous VLPs with more virion-like antibody reactivity. These effects can be attributed to a combination of more complete and regular assembly of the VLPs, better folding of L1, reduced non-specific disulfide-mediated aggregation and increased stability of the VLPs. Markedly different antigenicity of HPV16 VLPs was observed upon D/R treatment with a panel of monoclonal antibodies targeting neutralization sensitive epitopes. Multiple epitope-specific assays with a panel of mAbs with different properties and epitopes are required to gain a better understanding of the immunochemical properties of VLPs and to correlate the observed changes at the molecular level. Mapping of known antibody epitopes to the homology model explains the changes in antibody reactivity upon D/R. In particular, the H16.H5 epitope is partially occluded by intercapsomeric interactions involving the L1 C-terminal arm. The homology model allows a more precise mapping of antibody epitopes. This work provides a better understanding of VLPs in current vaccines and could guide the design of improved vaccines or therapeutics.</p

    A Novel Histone Deacetylase Inhibitor Exhibits Antitumor Activity via Apoptosis Induction, F-Actin Disruption and Gene Acetylation in Lung Cancer

    Get PDF
    BACKGROUND: Lung cancer is the leading cause of cancer mortality worldwide, yet the therapeutic strategy for advanced non-small cell lung cancer (NSCLC) is limitedly effective. In addition, validated histone deacetylase (HDAC) inhibitors for the treatment of solid tumors remain to be developed. Here, we propose a novel HDAC inhibitor, OSU-HDAC-44, as a chemotherapeutic drug for NSCLC. METHODOLOGY/PRINCIPAL FINDINGS: The cytotoxicity effect of OSU-HDAC-44 was examined in three human NSCLC cell lines including A549 (p53 wild-type), H1299 (p53 null), and CL1-1 (p53 mutant). The antiproliferative mechanisms of OSU-HDAC-44 were investigated by flow cytometric cell cycle analysis, apoptosis assays and genome-wide chromatin-immunoprecipitation-on-chip (ChIP-on-chip) analysis. Mice with established A549 tumor xenograft were treated with OSU-HDAC-44 or vehicle control and were used to evaluate effects on tumor growth, cytokinesis inhibition and apoptosis. OSU-HDAC-44 was a pan-HDAC inhibitor and exhibits 3-4 times more effectiveness than suberoylanilide hydroxamic acid (SAHA) in suppressing cell viability in various NSCLC cell lines. Upon OSU-HDAC-44 treatment, cytokinesis was inhibited and subsequently led to mitochondria-mediated apoptosis. The cytokinesis inhibition resulted from OSU-HDAC-44-mediated degradation of mitosis and cytokinesis regulators Auroroa B and survivin. The deregulation of F-actin dynamics induced by OSU-HDAC-44 was associated with reduction in RhoA activity resulting from srGAP1 induction. ChIP-on-chip analysis revealed that OSU-HDAC-44 induced chromatin loosening and facilitated transcription of genes involved in crucial signaling pathways such as apoptosis, axon guidance and protein ubiquitination. Finally, OSU-HDAC-44 efficiently inhibited A549 xenograft tumor growth and induced acetylation of histone and non-histone proteins and apoptosis in vivo. CONCLUSIONS/SIGNIFICANCE: OSU-HDAC-44 significantly suppresses tumor growth via induction of cytokinesis defect and intrinsic apoptosis in preclinical models of NSCLC. Our data provide compelling evidence that OSU-HDAC-44 is a potent HDAC targeted inhibitor and can be tested for NSCLC chemotherapy

    Mitochondrial Apoptosis and FAK Signaling Disruption by a Novel Histone Deacetylase Inhibitor, HTPB, in Antitumor and Antimetastatic Mouse Models

    Get PDF
    BACKGROUND: Compound targeting histone deacetylase (HDAC) represents a new era in molecular cancer therapeutics. However, effective HDAC inhibitors for the treatment of solid tumors remain to be developed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we propose a novel HDAC inhibitor, N-Hydroxy-4-(4-phenylbutyryl-amino) benzamide (HTPB), as a potential chemotherapeutic drug for solid tumors. The HDAC inhibition of HTPB was confirmed using HDAC activity assay. The antiproliferative and anti-migratory mechanisms of HTPB were investigated by cell proliferation, flow cytometry, DNA ladder, caspase activity, Rho activity, F-actin polymerization, and gelatin-zymography for matrix metalloproteinases (MMPs). Mice with tumor xenograft and experimental metastasis model were used to evaluate effects on tumor growth and metastasis. Our results indicated that HTPB was a pan-HDAC inhibitor in suppressing cell viability specifically of lung cancer cells but not of the normal lung cells. Upon HTPB treatment, cell cycle arrest was induced and subsequently led to mitochondria-mediated apoptosis. HTPB disrupted F-actin dynamics via downregulating RhoA activity. Moreover, HTPB inhibited activity of MMP2 and MMP9, reduced integrin-ฮฒ1/focal adhesion complex formation and decreased pericellular poly-fibronectin assemblies. Finally, intraperitoneal injection or oral administration of HTPB efficiently inhibited A549 xenograft tumor growth in vivo without side effects. HTPB delayed lung metastasis of 4T1 mouse breast cancer cells. Acetylation of histone and non-histone proteins, induction of apoptotic-related proteins and de-phosphorylation of focal adhesion kinase were confirmed in treated mice. CONCLUSIONS/SIGNIFICANCE: These results suggested that intrinsic apoptotic pathway may involve in anti-tumor growth effects of HTPB in lung cancer cells. HTPB significantly suppresses tumor metastasis partly through inhibition of integrin-ฮฒ1/FAK/MMP/RhoA/F-actin pathways. We have provided convincing preclinical evidence that HTPB is a potent HDAC targeted inhibitor and is thus a promising candidate for lung cancer chemotherapy
    • โ€ฆ
    corecore