151 research outputs found

    Delivering Live Multimedia Streams to Mobile Hosts in a Wireless Internet with Multiple Content Aggregators

    Get PDF
    We consider the distribution of channels of live multimedia content (e.g., radio or TV broadcasts) via multiple content aggregators. In our work, an aggregator receives channels from content sources and redistributes them to a potentially large number of mobile hosts. Each aggregator can offer a channel in various configurations to cater for different wireless links, mobile hosts, and user preferences. As a result, a mobile host can generally choose from different configurations of the same channel offered by multiple alternative aggregators, which may be available through different interfaces (e.g., in a hotspot). A mobile host may need to handoff to another aggregator once it receives a channel. To prevent service disruption, a mobile host may for instance need to handoff to another aggregator when it leaves the subnets that make up its current aggregator�s service area (e.g., a hotspot or a cellular network).\ud In this paper, we present the design of a system that enables (multi-homed) mobile hosts to seamlessly handoff from one aggregator to another so that they can continue to receive a channel wherever they go. We concentrate on handoffs between aggregators as a result of a mobile host crossing a subnet boundary. As part of the system, we discuss a lightweight application-level protocol that enables mobile hosts to select the aggregator that provides the �best� configuration of a channel. The protocol comes into play when a mobile host begins to receive a channel and when it crosses a subnet boundary while receiving the channel. We show how our protocol can be implemented using the standard IETF session control and description protocols SIP and SDP. The implementation combines SIP and SDP�s offer-answer model in a novel way

    Spectral ergodicity and normal modes in ensembles of sparse matrices

    Full text link
    We investigate the properties of sparse matrix ensembles with particular regard for the spectral ergodicity hypothesis, which claims the identity of ensemble and spectral averages of spectral correlators. An apparent violation of the spectral ergodicity is observed. This effect is studied with the aid of the normal modes of the random matrix spectrum, which describe fluctuations of the eigenvalues around their average positions. This analysis reveals that spectral ergodicity is not broken, but that different energy scales of the spectra are examined by the two averaging techniques. Normal modes are shown to provide a useful complement to traditional spectral analysis with possible applications to a wide range of physical systems.Comment: 22 pages, 15 figure

    Policy-Driven Memory Protection for Reconfigurable Hardware

    Full text link
    Abstract. While processor based systems often enforce memory pro-tection to prevent the unintended sharing of data between processes, current systems built around reconfigurable hardware typically offer no such protection. Several reconfigurable cores are often integrated onto a single chip where they share external resources such as memory. While this enables small form factor and low cost designs, it opens up the op-portunity for modules to intercept or even interfere with the operation of one another. We investigate the design and synthesis of a memory protection mechanism capable of enforcing policies expressed as a formal language. Our approach includes a specialized compiler that translates a policy of legal sharing to reconfigurable logic blocks which can be di-rectly transferred to an FPGA. The efficiency of our access language design flow is evaluated in terms of area and cycle time across a variety of security scenarios

    High-rate quantum cryptography in untrusted networks

    Get PDF
    We extend the field of continuous-variable quantum cryptography to a network formulation where two honest parties connect to an untrusted relay by insecure quantum links. To generate secret correlations, they transmit coherent states to the relay where a continuous-variable Bell detection is performed and the outcome broadcast. Even though the detection could be fully corrupted and the links subject to optimal coherent attacks, the honest parties can still extract a secret key, achieving high rates when the relay is proximal to one party, as typical in public networks with access points or proxy servers. Our theory is confirmed by an experiment generating key-rates which are orders of magnitude higher than those achievable with discrete-variable protocols. Thus, using the cheapest possible quantum resources, we experimentally show the possibility of high-rate quantum key distribution in network topologies where direct links are missing between end-users and intermediate relays cannot be trusted.Comment: Theory and Experiment. Main article (6 pages) plus Supplementary Information (additional 13 pages

    Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    Get PDF
    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (-90‰ to -154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ -154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ -125‰), where 40Ar/39Ar geochronological data indicate Miocene (18-15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics

    New Data Security Requirements and the Proceduralization of Mass Surveillance Law after the European Data Retention Case

    Get PDF
    This paper discusses the regulation of mass metadata surveillance in Europe through the lens of the landmark judgment in which the Court of Justice of the European Union struck down the Data Retention Directive. The controversial directive obliged telecom and Internet access providers in Europe to retain metadata of all their customers for intelligence and law enforcement purposes, for a period of up to two years. In the ruling, the Court declared the directive in violation of the human rights to privacy and data protection. The Court also confirmed that the mere collection of metadata interferes with the human right to privacy. In addition, the Court developed three new criteria for assessing the level of data security required from a human rights perspective: security measures should take into account the risk of unlawful access to data, and the data’s quantity and sensitivity. While organizations that campaigned against the directive have welcomed the ruling, we warn for the risk of proceduralization of mass surveillance law. The Court did not fully condemn mass surveillance that relies on metadata, but left open the possibility of mass surveillance if policymakers lay down sufficient procedural safeguards. Such proceduralization brings systematic risks for human rights. Government agencies, with ample resources, can design complicated systems of procedural oversight for mass surveillance - and claim that mass surveillance is lawful, even if it affects millions of innocent people
    corecore