

Edinburgh Research Explorer

Consistency and repair for XML write-access control policies

Citation for published version:
Bravo, L, Cheney, J, Fundulaki, I & Segovia, R 2012, 'Consistency and repair for XML write-access control
policies' VLDB Journal, vol. 21, no. 6, pp. 843-867. DOI: 10.1007/s00778-012-0273-y

Digital Object Identifier (DOI):
10.1007/s00778-012-0273-y

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
VLDB Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28978258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s00778-012-0273-y
https://www.research.ed.ac.uk/portal/en/publications/consistency-and-repair-for-xml-writeaccess-control-policies(4e27e72e-bcb5-4fd4-8729-1d0e83f5b9d9).html

Noname manuscript No.
(will be inserted by the editor)

Consistency and Repair for XML
Write-Access Control Policies

Loreto Bravo · James
Cheney · Irini Fundulaki ·
Ricardo Segovia

Received: date / Accepted: date

Abstract XML access control policies involving updates
may contain security flaws, here called inconsistencies, in
which a forbidden operation may be simulated by perform-
ing a sequence of allowed operations. This article investi-
gates the problem of deciding whether a policy is consis-
tent, and if not, how its inconsistencies can be repaired. We
consider total and partial policies expressed in terms of an-
notated schemas defining which operations are allowed or
denied for the XML trees that are instances of the schema.
We show that consistency is decidable in PTIME for such
policies and that consistent partial policies can be extended
to unique least-privilege consistent total policies. We also
consider repair problems based on deleting privileges to re-
store consistency, show that finding minimal repairs is NP-
complete, and give heuristics for finding repairs. Finally,
we experimentally evaluate these algorithms in comparison
with an exact approach based on answer-set programming.

1 Introduction

Valuable data such as scientific databases or electronic health-
care records are often represented using XML. Such data
may include a mixture of information that should be publicly-
accessible and other information that should be kept confi-
dential. XML database security is becoming an important

L. Bravo
Universidad de Concepción, Chile
E-mail: lbravo@udec.cl

J. Cheney
University of Disburse

I. Fundulaki
ICS-FORTH, Greece

R. Segovia
Universidad de Concepción, Chile

problem because of the increasing use of XML databases
to store and manage such data. There are over 50 XQuery
implementations, including a number of commercial native
XML database products as well as extensions of relational
databases with XML or XQuery features. However, secu-
rity, and specifically fine-grained access control, have not
yet been adopted widely in these products. Most of them, in
contrast, support a coarse-grained model wherein users are
granted or denied access to a whole document (XML tree).

This coarse-grained model has the same drawbacks as
similar models for relational databases:

– Security policies may be implemented by the middle-
ware or client, by code spread across many modules.
This makes it difficult to understand, validate, or change
the security policy, which in turn opens the door to bugs
or vulnerabilities.

– Individual database users may have unnecessary capa-
bilities to perform actions. Thus, they can accidentally
or maliciously damage the integrity of the data. If any
user’s account is subverted, an attacker immediately gains
a great deal of power over the system.

Fine-grained access control policies that are enforced by
the database itself mitigate these problems, by providing a
high-level, declarative description of the policy that makes
it possible to assign users only necessary capabilities. Thus,
a number of approaches to specifying and enforcing fine-
grained access control policies for XML data (or for XML
views of databases) have been developed. The main tech-
niques explored to date include security views, which hide
confidential data [28, 11, 18]; accessibility maps that anno-
tate the XML data indicating which parts may be read by
different users [31, 16]; or static analysis techniques that at-
tempt to statically determine whether a requested part of the
database may be read [23].

These techniques mainly address confidentiality — the
problem of keeping sensitive information secret. This is only
one part of security. Another important aspect of security
is integrity — the problem of ensuring that sensitive data
cannot be changed or corrupted accidentally or by attack-
ers. Both confidentiality and integrity can be addressed by
access control policies that check read and write operations.
For XML databases, most work so far only addresses read-
access policies, but there is a growing literature on XML
write-access control techniques that constrain updates [20,
13, 17, 22, 15].

In this article, we study an important issue for write-
access control policies for XML data: the problem of consis-
tency. In general, an XML write-access control policy con-
sists of a set of rules that specify the update actions a user
can perform based on the syntax of the update and not its ac-
tual behavior. Thus, it is possible that a single update request
that is explicitly forbidden by the policy can nevertheless be

2

simulated by a sequence of allowed update requests. We call
such write-access control policies inconsistent.

For highly-expressive classes of policies whose rules can
be defined by arbitrary XPath expressions, consistency be-
comes undecidable [13], indeed, in this case it is closely re-
lated to reachability problems that are also undecidable, as
shown by Moore [22] and (for reachability modulo a schema)
by Jacquemard and Rusinowitch [15]. Such policies and rules
can describe when an XML document (i.e., a tree) corre-
sponds to a Turing machine state, and can constrain updates
so that only valid transitions can be performed. If policies
can also contain negative rules asserting that the machine
cannot make a transition from a start state to an accept state,
then a policy is consistent if and only if the corresponding
Turing machine cannot halt.

To avoid this undecidability, we must consider weaker
classes of policies or smaller classes of updates. In this ar-
ticle, we develop an approach in which policies and allow-
able updates are both constrained by a schema. That is, there
must be a DTD-like schema constraining all XML docu-
ments under access control; the policies are defined in terms
of this schema (rather than as arbitrary XPath expressions),
and only update operations that are guaranteed to preserve
the schema are permitted. Although these restrictions may
appear draconian, in this article we provide examples which
show that some common schemas and policies can fit this
model. Moreover, there is a substantial payoff in doing so, in
terms of complexity: consistency checking becomes a syn-
tactic, PTIME check of the policy, rather than undecidable.

The first contribution of the article is a nontrivial and
useful class of security policies for which consistency check-
ing is in PTIME. To our knowledge, this is the first example
of such a class for XML write-access control policies. In this
context, we study both total and partial policies. For the for-
mer, each possible privilege is explicitly allowed or denied,
whereas for the latter, some privileges can be inferred from
others. Partial policies are a less verbose way express access
control information, but this conciseness only introduces a
polynomial-time increase in the complexity of consistency
checking.

Simply reporting that a policy is inconsistent may not be
helpful to users, especially if policies can grow large so that
the ramifications of small changes are hard to predict. Thus,
a natural question is how to suggest repairs, or updates to
policies that restore consistency. There are a number of in-
teresting possible choices for classes of repairs; we focus
on what we call least-privilege repairs that can only remove
privileges, in line with the principle of least privilege [26].
That is, repairs may remove privileges that lead to inconsis-
tencies, but cannot introduce new privileges.

Thus, the second main contribution of the article is a
study of the repair problem. We show that computing min-
imal repairs is in general NP-complete. Moreover, we de-

+(hospital, insert (patient)) +(hospital, delete (patient))
-(treatments, insert (treatment)) -(treatments, delete (treatment))
+(name,replaceVal) -(drug,replace (*,*))
-(OTC,replaceVal) -(presDrug,replaceVal)
-(diagnosis,replaceVal) -(date,replaceVal)

Table 1 Policy example for the hospital XML DTD

velop and experimentally evaluate practical repair algorithms,
including a naive greedy algorithm and a more sophisticated
algorithm based on encoding repair problems as instances
of the Minimum Set Cover Problem (MSCP) [9]. Our ex-
periments show that both naive and MSCP-based repair al-
gorithms find small repairs in practice, and do so consider-
ably faster compared to a generic, exact approach based on
the DLV answer-set programming system [19]. Moreover,
as policy and schema size grow, our algorithms remain fast
enough for semi-interactive use: for example, our approach
runs in seconds to repair a policy over a schema with 500
elements, whereas DLV does not finish within a minute for
the same problem.

1.1 Example

To give a flavor of the approach to policies, consistency
and repairs taken in the rest of the article, we consider a
small example. Consider a typical hospital information sys-
tem where patient data are stored in a database and accessed
by client-side or middleware code that authenticates users
and then mediates queries and updates to the data on their
behalf. In the rest of the example, we write “the user up-
dates the data” as shorthand for “the client or middleware
updates the data on behalf of an authenticated user.” The raw
data could be stored either in a traditional RDBMS or native
XML database, but the system provides an XML view ac-
cording to a schema and clients can update the data through
this view. Moreover, different users and user roles may have
different XML security views associated with them [11], en-
suring that users can only see data that they need for their
work. However, we may want to grant only read-access to
some of the visible data.

The XML DTD in Fig. 1 describes patient data. A pa-
tient has a name and is associated with zero or more treat-
ments. A treatment consists of a drug that was prescribed to
the patient and that can be one of placebo, presDrug (pre-
scription) and OTC (over-the-counter) drug, a diagnosis and
the date of a patient’s visit. The XML document shown in
Fig. 2 is an instance of the hospital DTD shown in Fig. 1.
The document can be updated and queried by different users,
e.g., doctors, nurses, administrators. The policy shown in
Table 1 shows a policy describing the actions that nurses
are allowed (+) and not allowed (-) to perform.

We can use a variant of the policy language XAcU [13]
to provide fine-grained write-access control over the hospital

3

hospital

patient

name

str

treatments

treatment

drug

placebo OTC

str

presDrug

str

diagnosis

str

date

str

*

*

Fig. 1 Hospital DTD Graph

hospital

patient

name

Mr. Liu

treatments

treatment

drug

presDrug

Amox

diagnosis

Infection

date

10/9/07

patient

name

Ms. Hill

treatments

treatment

drug

placebo

diagnosis

Depression

date

2/5/07

treatment

drug

OTC

Aspirin

diagnosis

Headache

date

12/06/07

Fig. 2 Hospital XML document

hospital

patient

name

Mrs. Liu

treatments

treatment

drug

presDrug

Amox

diagnosis

Infection

date

10/9/07

patient

name

Ms. Hill

treatments

treatment

drug

placebo

diagnosis

Depression

date

2/5/07

patient

name

Ms. Empis

treatments

Fig. 3 Updated XML document

data, enforced by the database, to complement any security
checks performed by the client or middleware. In this naive
policy we allow a nurse to perform insert, delete and replace
update actions. More specifically, a nurse is allowed to in-
sert and delete patients (rules +(hospital, insert (patient))
and +(hospital, delete (patient))) but she cannot modify a
patient’s diagnosis or change a prescription drug to an off-
the-counter drug (rule -(drug,replace (*,*))). Note that here
(drug,replace (*,*)) is used as a shorthand for all possible
replacements of one drug with another. However, it is easy

to see that the diagnosis of a patient can still be changed
by deleting a patient record and then inserting it back again
with a modified value of diagnosis. Thus, a forbidden update
request can be achieved by a sequence of allowed ones.

We call an access control policy with this characteris-
tic inconsistent. Given an inconsistent policy, it is a natural
question to ask how the policy can be repaired to restore
consistency. Obviously, any inconsistent policy can be re-
paired by removing all of its positive or negative rules (or
simply all of its rules). However, we expect security admin-
istrators may prefer to select among smaller repairs, and se-
lect among them based on domain knowledge. For example,
the above policy may be repaired by taking away either rule
+(hospital, insert (patient) or +(hospital, delete (patient)).
It seems sensible to allow nurses to insert patient records
and change some information such as names, while forbid-
ding nurses to delete patient records. Instead, a record dele-
tion should be done by an administrator, and a change to the
treatment information should be done by a doctor.

In addition to consistency, an important property that
should be considered when defining a policy language is
succinctness. We identify here two forms of succinctness:
syntactic and semantic. In the first case, we can define macros
that can be expanded (e.g., this is the case for rule -(drug,
replace (*,*))) to all matching privileges. This kind of syn-
tactic shorthand can be simulated by performing a sequence
of actions justified by other privileges. For the second case,
we believe it is useful to allow policies to be partial, that is,
to omit privileges that are implied by others. For example, in
the original policy above, it is redundant to state that nurses
can replace patient names, since they can already just delete
the patient record and replace it with a new record with an
updated name. In a partial policy, we may omit this rule.

1.2 Outline

As described above, this article makes the following contri-
butions:

1. We define consistency and identify a useful class of se-
curity policies for which consistency checking is in PTIME;
and we extend these results to partial policies, from which
total policies can be recovered in PTIME.

2. We study the problem of repairing consistent policies
by removing privileges and show that it is NP-complete;
and we give exact and approximation algorithms for find-
ing repairs.

3. We present an implemented tool for policy consistency
checking and repair called ACCon, and we experimen-
tally evaluate the consistency and repair algorithms.

Preliminary versions of this work have appeared previously
in a conference paper [5] and a demonstration of ACCon [6].
This article incorporates revised and extended material from

4

those papers. Specifically, compared to [5], this article in-
cludes full proofs and extends the schema language from the
relatively restricted case of structured DTDs [11] to a larger
class of XML schemas. We consider CEDTDs, or EDTDs
based on Chain Regular Expressions [3]. While CEDTDs
are not as expressive as full XML Schemas, many schemas
encountered in practice only use chain regular expressions.
Compared to [6], we present a more mature tool and a sys-
tematic experimental evaluation, including comparison with
an encoding of the repair problem using answer-set pro-
gramming in DLV.

The structure of the rest of the article is as follows. In
Section 2 we review background concerning XML trees and
DTDs. Section 3 we introduce our version of the XML Ac-
cess Control for Updates (XAcU) policy formalism [13]. In
Section 4 we define consistency and give polynomial time
algorithms for checking consistency of total and partial poli-
cies. In Section 5 we define the policy repair problem, prove
its NP-completeness and give algorithms for repairing poli-
cies. In Section 6 we present an experimental evaluation
based on the ACCon implementation. Section 7 discusses
additional related work and Section 8 concludes.

Note to practitioners: From the point of view of im-
plementation, the key sections of this article are Section 3
(defining security policies), Sections 4.1 and 4.3 giving def-
initions and algorithms for consistency. Section 4.2 gives de-
tails of the proof of the main theoretical result, and can be
skipped by readers only interested in implementation. The
repair algorithms in Section 5 and their experimental eval-
uation in Section 6 can also be appreciated without reading
the accompanying proofs.

2 Background

2.1 Trees

We model XML documents as rooted unordered trees with
labels from L ∪ {str}, where L is the infinite domain of la-
bels.

Definition 1 (XML Tree) An unordered XML tree t is a
structure of the form t = (Nt, Et, λt, rt, vt) where:

1. (Nt, Et) is a tree in the usual sense with root rt: Nt is
the set of nodes, Et ⊂ Nt × Nt is the set of edges, and
there is exactly one path from rt to each node of Nt;

2. λt : Nt → L ∪ {str} is a labeling function over nodes,
such that λ(n) = str implies n is a leaf; and

3. vt is a function that assigns string values to leaves la-
beled with str.

We denote by childrent(n), parentt(n) and desct(n), the
children, parent and descendant nodes, respectively, of a node

n in an XML tree t. The set descet (n) denotes the edges in
Et between descendant nodes of n.

Trees have the standard notion of isomorphism; two iso-
morphic trees have the same structure, even if they differ in
the choice of vertex names used.

Definition 2 (XML Tree Isomorphism) We say that an XML
tree t1 is isomorphic to an XML tree t2, denoted t1 ≡ t2, iff
there exists a bijection h : Nt1 → Nt2 where:

1. h(rt1) = rt2 ,
2. if (x, y) ∈ Et1 then (h(x), h(y)) ∈ Et2 ,
3. λt1(x) = λt2(h(x)), and
4. vt1(x) = vt2(h(x)) for every x with λt1(x) = str =

λt2(h(x)).

2.2 Atomic Updates

Our updates are modeled according to the XQuery Update
Facility 1.0 Recommendation [25]. The syntax of atomic up-
dates is as follows:

op ::=delete(n) | insert(n, t) | replace(n, t) | replaceVal(n, s)

A delete(n) operation will delete node n and all its descen-
dants. A replace(n, t) operation will replace the subtree with
root n by the tree t. A replaceVal(n, s) operation will re-
place the text value of node n with string s. An insert(n, t)
operation will insert a tree t as a child node below n. In the
standard, there are several additional types of insert opera-
tions, allowing to insert nodes before, after, or into the con-
tent of other nodes, but since we consider unordered XML
trees these distinctions are unnecessary.

More formally, for a tree t1 = (Nt1 ,Et1 , λt1 , rt1 , vt1), a
node n in t1, a tree t2 = (Nt2 , Et2 , λt2 , rt2 , vt2) and a string
value s, the result of applying insert(n, t2), replace(n, t2),
delete(n) and replace(n, s) to t1, is a new tree t defined for-
mally as shown in Table 2. We denote by [[op]](t) the result
of applying update operation op on tree t.

Consider for instance the atomic operations insert(n1, t1)
and delete(n2) where n1 is the hospital node and n2 is the
last, in document order, treatment node of the XML doc-
ument shown in Figure 2. The inserted subtree t1 and the
deleted subtree t2 are shown in Figure 4. The result of ap-
plying these atomic operations on the XML document of
Figure 2, is the updated XML document shown in Figure 3.

2.3 Schemas

There are two main schema languages for XML: Document
Type Definition (DTD) and XML schema (XSD). Since we
want to deal with both types of schemas, we need a com-
mon abstraction for both. In [21], it is shown that Extended
DTDs (EDTDs) can be used as such an abstraction. For the

5

Nt Et λt rt vt

[[insert(n, t2)]](t1) Nt1 ∪Nt2 Et1 ∪ Et2∪ {(n, rt2)} λt1 (m), m ∈ Nt1 rt1 vt1 (m), m ∈ Nt1

λt2 (m), m ∈ Nt2 vt2 (m), m ∈ Nt2

[[replace(n, t2)]](t1) (Nt1 \ desct1 (n)) ∪Nt2 Et1 ∪ Et2∪ λt1 (m), rt1 vt1 (m), m ∈ Nt1

{(parentt1 (n), rt2)} \ desc
e
t1
(n) m ∈ (Nt1 \ {n}) vt2 (m), m ∈ Nt2

λt2 (m), m ∈ Nt2

[[replace(n, s)]](t1) Nt1 Et1 λt1 (m), m ∈ Nt1 rt1 vt1 (m),
m ∈ (Nt1\{n})
vt1 (n) = s

[[delete(n)]](t1) Nt1 \ desct1 (n) Et1 \ descet1 (n) λt1 (m), rt1 vt1 (m),
m ∈ (Nt1\desct1 (n)) m ∈ (Nt1\desct1 (n))

Table 2 Semantics of update operations

t1 :

patient

name

Ms. Empis

treatments t2 :

treatment

drug

OTC

Aspirin

diagnosis

Headache

date

12/06/07

Fig. 4 XML trees t1 and t2

purposes of this article, we use the generic term schema to
refer to an arbitrary Extended DTD. In this article, we con-
sider nonrecursive schemas only.

Definition 3 (EDTD) An extended DTD (EDTD) D is rep-
resented by (Ele,Types, Rg, rt, µ) where

1. Ele is a finite set of element names,
2. Types is a finite set of element types,
3. rt is a distinguished element name in Ele and in Types

called the root,
4. µ is a mapping from Types to Ele such that µ(rt) = rt,

and
5. Rg defines the element types: that is, Rg : Types →
RegTypes , where RegTypes is the set of regular expres-
sions r over Types , defined using the grammar:

r ::= str | ε | B | r1, . . . , rn | r1 + . . .+ rn | r∗

where “,”, “+” and “∗” stand for concatenation, disjunction
and Kleene star respectively, ε for the EMPTY element con-
tent, str for text values and B ∈ Types .

We will refer to A → Rg(A) as the production rule for A.
An element type Bi that appears in the production rule of
an element type A is called the subelement type of A. We
write A ≤D B for the transitive, reflexive closure of the
subelement relation.

A node labeled with an element name A in an EDTD D

is called an instance of A. An XML tree t = (Nt, Et, λt,

rt, vt) conforms to a EDTD D = (Ele,Types, Rg, rt, µ) at

element typeA if there is a function η : Nt → Types∪{str}
such that:

1. rt is labeled with the name associated to type A (i.e.,
η(rt) = A)

2. if η(n) ∈ Types then the label associated with η(n) is
the label of n (µ(η(n)) = λt(n)) and the labels of the
children of n match the content regular expression asso-
ciated with type η(n) (η[childrent(n)] ∈ L(Rg(η(n)))).

3. if η(n) = str then λt(n) = str and vt(n) is defined and
childrent(n) is empty.

An XML tree t is a valid instance of the EDTD D if it con-
forms toD at element type rt. We write ID(A) for the set of
valid instances of D at element type A, and ID for ID(rt).

Note that even though we are not including regular ex-
pressions of the form r? and r+ which are common in DTDs,
we can express them using (r+ε) and (r, r∗) respectively. In
XSDs, it is possible to express cardinality restrictions using
minOccurs and maxOccurs which are not expressible using
EDTD. However, for the purposes of this article, we treat
elements with cardinality restrictions the same as Kleene
star; the more specific information about cardinality is not
relevant to our access control policies. Anonymous types in
XSDs can be easily handled by EDTD by adding a type with
a fresh name.

The distinction in EDTDs between element names and
types is needed only to represent XSDs. In the case of DTDs,
there is only one type associated for each name, i.e. Ele =

Types and µ is the identity. Thus, a DTD can be expressed
simply by (Ele,Rg, rt).

In this article, we will often restrict attention to EDTDs
that are unambiguous in the sense that for every tree t ∈ ID
there is exactly one mapping η showing how t validates
in D. This property is important because we will use type
names in security policies, and ambiguity complicates the
meaning of such policies significantly. Both ordinary DTDs
and XML Schemas are constrained to be unambiguous, and
[21] investigate several other classes of EDTDs that are un-
ambiguous, including single-type and 1-pass preorder typ-
ing. They argue that these restrictions are more liberal than
the ones employed in the DTD or XML Schema standards.

6

In any case, we simply assume unambiguous EDTDs, leav-
ing the question of how this requirement is enforced as a sep-
arate issue that is already largely addressed by prior work.

2.3.1 Structured Regular Expressions and SEDTDs

In [11] and a number of other papers, the authors study a
special type of DTDs that they call structured DTDs. Al-
though not all DTDs are syntactically representable in this
form, one can (as argued in [11]) represent general DTDs by
introducing new element types.

Here, we would like to do the same for EDTD. This sim-
plification will allow us to analyze the problems of access
control in a simpler setting, and then generalize.

Definition 4 (SEDTD) Let L be the infinite domain of la-
bels. A structured EDTD (SEDTD) D is an EDTD such that
Rg : Types → SRegTypes , where SRegTypes is the set of
simple regular expressions r over Types , defined using the
grammar:

r ::= str | ε | B1, . . . , Bn | B1 + · · ·+Bn | B1∗

where we further require that in a sequential composition
B1, . . . , Bn or sum B1 + · · · + Bn, the type names Bi are
distinct (that is, Bi = Bj implies i = j.)

The relationship between the element types of a SEDTD
can be represented using a directed graph that we call a
SEDTD graph.

Definition 5 (SEDTD Graph) A SEDTD graph for a SEDTD
D = (Ele,Types, Rg, rt, µ) is a directed graph GD =

(VD, ED, rD, OpD) where

1. VD is the set of nodes for the element types in Types ∪
{str},

2. ED = {(A,B) | A,B ∈ Types and B is a subelement
type of A}

3. rD is the distinguished node rt
4. For each A, Op(A) is the regular expression operation

associated with A (that is, either str, ε,+, ∗, or sequen-
tial composition ’,’.

We depict SEDTD graphs using the convention that dot-
ted lines indicate a content type of the form B1 + · · ·+Bn,
an asterisk on an edge indicates a content type of the form
B∗, and no decoration indicates a content model of the form
B1, . . . , Bn. Also, it should be clear that we can convert a
graph back to the original SEDTD, although we do not make
use of this connection explicitly, other than to help visualize
DTD graphs and policies.

Example 1 The EDTD graph presented in Fig. 5 corresponds
to the SEDTD (Ele,Types, Rg, rt, µ), whereEle = Types =

{A,B, . . . ,K}, rt = R and µ is the identity function for all
element types except µ(G) = L and µ(F) = L. The pro-
duction rules are:

A B

C D E

F G

R

H I

str

J

R → A+B+J+K

str

F → str

K

str

A → C+D
C → F★
D → F★

B → E★ E → G★

G → H+I

J → G★

H → str

I → str

K → str

str

Fig. 5 Example DTD

R→ A+B+J+K

A→ C,D
C → F∗
D → F∗

B → E∗
E → G∗
G→ H + I

J → G∗

F → str
H → str
I → str
K → str

2.3.2 Chain Regular Expressions and CEDTDs

Besides structured schemas, we consider schemas whose reg-
ular expressions belong to a restricted class called chain
regular expressions (or CHAREs). These were introduced
in work on inferring DTDs or schemas from example data,
where it was argued that over 90% of regular expressions
encountered in practical schemas are chain regular expres-
sions [3].

Essentially, a chain RE is a sequence of factors, each of
which is of the form (A1 + · · ·+An) or (A1 + · · ·+An)

q ,
where q is one of ?,+, or ∗. Recall that we consider only the
Kleene star operation as primitive; thus, for unordered data,
chain REs can be further simplified since (A1+· · ·+An)∗ ≡
A∗1, . . . , A

∗
n.

Definition 6 An unordered chain regular expression (CHARE)
is an expression of the form r where:

f ::= (A1 + · · ·+An) | A∗

r ::= f1, . . . , fn | str

That is, a CHARE is either an atomic type str or a se-
quence of sum factors (A1+ · · ·+An), or starred single ele-
ments. Moreover, we require that types be single-occurrence:
no type name is reused. Note that a sum factor may have just
one alternative; thus, A, (B + C), D∗, E, F ∗, (G+H) is a
CHARE according to our definition. Note also that repeated
element names within a sum term are redundant. Other reg-
ular expression operators such as A? (optional A) and A+

(sequence of one or more As) could also be included. For
the purposes of access control they can be handled the same
as Kleene star A∗, by allowing only insertion and deletion
operations; the additional cardinality constraint on the num-
ber of As is irrelevant to access control.

We restrict attention to regular expressions that use each
type name at most once. We say that a chain EDTD, or
CEDTD is an EDTD in which every regular expression used

7

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="customer">
<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="caCustomer" type="caCustomer"/>
<xs:element name="usCustomer" type="usCustomer"/>
</xs:choice>

</xs:complexType>
</xs:element>
<xs:complexType name="caCustomer">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="address" type="caAddress"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="usCustomer">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="address" type="usAddress"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="caAddress">
<xs:sequence>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="province" type="xs:string"/>
<xs:element name="postalCode" type="xs:string"/>
<xs:element name="country" type="xs:string"

fixed="Canada"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="usAddress">
<xs:sequence>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="state" type="xs:string"/>
<xs:element name="zip" type="xs:decimal"/>
<xs:element name="country" type="xs:string"

fixed="US"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

Fig. 6 Canadian and US Customer XSD

in a rule is a CHARE. Every SEDTD is a CEDTD, so in the
sequel results proved for CEDTDs will automatically apply
to SEDTDs as well.

Example 2 (Relating XSDs and CEDTDs) In this article, we
use SEDTDs and CEDTDs, which include features not present
in DTDs; on the other hand, XML Schemas include many
features that are not supported by CEDTDs. Nevertheless,
we can easily we can easily check whether a general XML
Schema defines a CEDTD, and many schemas do fit this
restriction. For example, the XSD in Figure 6 can be repre-
sented by the CEDTD D = (Ele, Types, Rg, rt, µ) with

Ele = {customer, caCustomer, usCustomer, name, address}
Types = {customer, caCustomer, usCustomer, name,

caAddress, usAddress}
rt = customer
µ(caAddress) = address
µ(usAddress) = address

and Rg is such that:

customer→ (caCustomer+usCustomer)∗

caCustomer→ (name,caAddress)
usCustomer→ (name,usAddress)
caAddress→ (street,city,province,postalCode)
usAddress→ (street,city,state,zip)
name→ str

street→ str
state→ str
province→ str
zip→ str
postalCode→ str

Note that elements of type caAddress and usAddress are
associated to the element name address. �

3 XML Access Control Framework

3.1 Policies

We use the notion of update access type to specify the ac-
cess authorizations in our context. Our update access types
are inspired by the XAcUannot language discussed in [13].
That work followed the idea of security annotations intro-
duced in [11] to specify the access authorizations for XML
documents in the presence of a DTD.

Definition 7 (Update Access Types) Given a SEDTD D,
an update type (UT) is an expression of the form:

ut ::= insert(B) | delete(B) | replace(A,B) | replaceVal

where A,B are types from D. An update access type (UAT)
defined over D is an expression of the form (A, ut) where
A is an element type in D and ut is an update type.

Intuitively, an UAT represents a set of atomic update opera-
tions. More specifically, given an instance t of SEDTD D,
an atomic update op, and an update access type uat we say
that op matches uat on t (op matchest uat) if:

η(n) = A t′ ∈ ID(B)

insert(n, t′) matchest (A, insert(B))

η(n) = B η(parentt(n)) = A

delete(n) matchest (A, delete(B))

η(n) = B t′ ∈ ID(B′) η(parentt(n)) = A

replace(n, t′) matchest (A, replace(B,B′))

η(n) = str η(parentt(n)) = A

replaceVal(n, s) matchest (A, replaceVal)

Here, η is the unique mapping from each node in t to the
element type associated to it (uniqueness follows from the
assumption that D is unambiguous).

It is trivial to translate our update access types to XAcUannot

security annotations. In this work we require that the eval-
uation of an update operation on a tree that conforms to a
schemaD results in a tree that conforms toD. It is clear then
that each update access type only makes sense for specific
element types. For the example DTD in Figure 5, the update
access type (A, delete(C)) is not meaningful because allow-
ing the deletion of a C-element would result in an XML

8

document that does not conform to the DTD, and there-
fore, the update will be rejected. Similarly, (R, delete(A))
or (R, insert(A)) are invalid since there has to be exactly
one node (labeled A,B, J or K) under R. On the other
hand, (B, delete(E)) and (B, insert(E)) are appropriate for
this specific DTD. Finally, we exclude reflexive replacement
update access types of the form (A, replace(Bi, Bi)) from
consideration. These would be schema-preserving when the
content of A matches either B∗i or B1 + · · ·+ Bn, but they
do not actually provide any expressive power that cannot be
simulated by other UATs. Moreover, as discussed further in
Section 4, reflexive replacement UATs are undesirable from
the point of view of consistency analysis.

The relation uat valid in D, which indicates that an up-
date access type uat is valid for the DTD D, is defined as
follows:

insert(B) valid in B∗ delete(B) valid in B∗

replaceVal valid in str

i, j ∈ [1, n] i 6= j

replace(Bi, Bj) valid in B1 + · · ·+Bn

U valid in Rg(A)

(A,U) valid in D

U valid in fi
U valid in f1, . . . , fn

We define the set of valid UATs for a given CEDTD D as
valid(D) = {uat | uat valid in D}. We define a valid run
as a sequence t0

op1−−→ · · · opn−−→ tn such that:

1. each ti is valid with respect to D, and
2. for each i ∈ {1, . . . , n}, we have ti = JopK(ti−1).

A security policy will be defined by a set of allowed and
forbidden valid UATs.

Definition 8 A security policy P defined over a CEDTD D

is represented by (A,F) where A is the set of allowed and
F the set of forbidden update access types defined over D
such that A ⊆ valid(D), F ⊆ valid(D) and A ∩ F = ∅. A
security policy is total if A ∪ F = valid(D), otherwise it is
partial.

Example 3 Consider the EDTD D in Fig. 5 and the policy
P =(A,F) where A is:

(R, replace(A,B)) (R, replace(B, J))
(R, replace(J,K)) (R, replace(K,J))
(R, replace(K,B)) (C, insert(F))
(C, delete(F)) (D, insert(F))
(D, delete(F)) (F, replaceVal)
(B, insert(E)) (B, delete(E))

(E, insert(G)) (E, delete(G))
(G, replace(I,H)) (J, insert(G))
(J, delete(G)) (H, replaceVal)
(I, replaceVal) (K, replaceVal)

and F = valid(D) \ A. This is a total policy. On the other
hand, P = (A, ∅) is a partial policy. �

The set of operations that are allowed by a policy P =

(A,F) on an XML tree t, denoted by [[A]](t, η), is the union
of the atomic update operations matching each UAT in A.
More formally, [[A]](t) = {op | op matchest uat and uat ∈
A}. We say that a valid run t0

op1−−→ t1 . . .
opn−−→ tn is al-

lowed if for every i ∈ {1, . . . , n}, we have opi ∈ [[A]](ti−1).
Analogously, the forbidden operations are [[F]](t) = {op |
op matchest uat and uat ∈ F}. If a policy P is total,
its semantics is given by its allowed updates, i.e. [[P]](t) =

[[A]](t). The meaning of partial policies is studied in detail
in Section 4.3.

Note that we do not allow replacements or deletes that
target the root of the tree. Indeed, replacing or deleting the
root of an XML tree does not make sense because the re-
sulting (empty) tree will not match the DTD. Replacements
and deletes targeting the root are examples of updates that
are not covered by any UAT; thus, they cannot be allowed or
forbidden by a policy. Instead, if we want a user to be able
to do anything to the tree we can allow this using a policy
(valid(D), ∅) that allows all of the valid UATs. (It is easy to
see that this suffices to allow any tree to be updated to any
other tree.)

4 Consistency

4.1 Total policies

A policy is said to be consistent if it is not possible to sim-
ulate a forbidden update through a sequence of allowed up-
dates. More formally:

Definition 9 Consider a policy P = (A,F) defined over
schemaD. An inconsistency in P consists of an allowed run
t0

op1−−→ t1 . . .
opn−−→ tn, and an update op0 ∈ [[F]](t0) such

that tn = [[op0]](t0). Conversely, P is consistent if there are
no inconsistencies.

Consistency is highly sensitive to the design of poli-
cies and update types. For example, we have consciously
chosen to omit reflexive replace update types of the form
(A, replace(Bi, Bi)) for an element type in the schema whose
production rule is either of the formB∗ orB1+. . .+Bn. To
see why, consider a conference management system where
a paper element has a decision and a title subelement. Sup-
pose that the policy allows the author of the paper to re-
place a paper with another paper element, but forbids to
change the value of the decision subelement. This policy is
inconsistent since by replacing a paper element by another
with a different decision subelement we are able to perform
a forbidden update. In fact, the UAT replace(paper, paper)
can simulate any other update type applying below a paper

9

element. Thus, if the policy forbids replacement of paper
nodes, then it would be inconsistent to allow any other op-
eration on decision and title. Because of this problem, we
argue that update types replace(Bi, Bi) should not be used
in policies. Instead, more specific privileges should be as-
signed individually, e.g., by allowing replacement of the text
values of title or decision.

Inconsistencies can be classified into two forms: insert/delete
and replace:

– Inconsistencies due to insert and delete operations arise
when the policy allows one to insert and delete nodes
of element type A whilst forbidding some operation in
some descendant element type of the node. In this case,
the forbidden operation can be simulated by first delet-
ing an A-element and then inserting a new A-element
after having done the necessary modifications.

– There are two kinds of inconsistencies created by replace
operations on a production rule A→ B1 + · · ·+ Bn of
an unambiguous schema. First, if we are allowed to re-
place Bi by Bj and Bj by Bk but not Bi by Bk, then
one can simulate the latter operation by composing the
first two. Second, suppose that we are allowed to replace
some element type Bi with an element type Bj and vice
versa. If some operation in the subtree of either Bi or
Bj is forbidden, then it is evident that one can simulate
the forbidden operation by a sequence of allowed opera-
tions, leading to an inconsistency.

In addition, it is worth pointing out that insert/delete and re-
place inconsistencies are independent in a certain sense: that
is, the presence or absence of an insert/delete inconsistency
does not affect that of a replace inconsistency. This is due
partly to the limits we place on the schema language, since
each node in a valid document can only be updated by in-
sert/delete operations or by replace operations, never both.
This independence is important in the development of repair
algorithms in the next section, since it means that we can
repair the insert/delete inconsistencies and replace inconsis-
tencies separately.

We say that nothing is forbidden below A in a policy
P = (A,F) defined over D if for every Bi s.t. A ≤D Bi,
we have (Bi, op) 6∈ F for every (Bi, op) ∈ valid(D). If
A → B1 + . . . + Bn, then we define the replace graph
GA = (VA, EA) where:

1. VA is the set of nodes for B1, B2, . . . Bn, and
2. (Bi, Bj) ∈ VA if there exists (A, replace(Bi, Bj)) ∈ A.

Also, the set of forbidden edges of A is EA = {(Bi, Bj) |
(A, replace(Bi, Bj)) ∈ F}. We say that a graph G = (V, E)
is transitive if (x, y), (y, z) ∈ E then (x, z) ∈ E . We write
G+A for the transitive closure of GA.

Definition 10 We say that a policy P = (A,F) defined
over CEDTD D is syntactically consistent if and only if for
every type A in D:

1. If B∗ ∈ RgD(A) and (A, insert(B)), (A, delete(B)) ∈
A, then nothing is forbidden below B, and

2. If (B1 + · · ·+Bn) ∈ RgD(A), then:
(a) for every i 6= j ∈ [1..n], if (Bi, Bj) ∈ G+A , then

(Bi, Bj) 6∈ FA, and
(b) for every i ∈ [1, . . . n], if Bi is contained in a cycle

in GA then nothing is forbidden below Bi.

In the case of total policies, condition 2a above amounts to
requiring that the replace graph GA is transitive (i.e., GA =

G+A).
Our main result is that syntactic consistency is the same

as consistency:

Theorem 1 A policy P = (A,F) defined over CEDTD D

is consistent if and only if it is syntactically consistent.

Proof The reverse direction is proved in detail in Section 4.2.
For the forward direction, we prove the contrapositive. Sup-
pose P is not syntactically consistent. If property (1) is vio-
lated, then there is obviously an insert/delete inconsistency
since we can simulate a forbidden UAT by deleting and in-
serting. If property (2a) is violated then we can simulate a
forbidden replace by performing a sequence of allowed re-
placements. Finally, if property (2b) is violated then we can
simulate a forbidden UAT by performing a chain of replace-
ments (similar to the case for property (1)). In each case, P
is inconsistent. ut

Example 4 (example 3 continued) The total policy P is in-
consistent. Some of the inconsistencies that can be found
are:

– (E, insert(G)) and (E, delete(G)) are in A, but there is
a forbidden operation belowG since (G, replace(H, I)) ∈
F (by condition 1, Theorem 1),

– (R, replace(A, J)), (R, replace(A,K)) are inA, but there
is a forbidden replace (R, replace(B,K)) in F (condi-
tion 2, Theorem 1), and

– There are cycles in GR involving both B and J , but
below each of them there is a forbidden UAT, namely
(G, replace(H, I)) (condition 3, Theorem 1)

It is easy to see that we can check whether a policy is syn-
tactically consistent using standard polynomial-time graph
algorithms to check properties (1), (2a) and (2b).

Proposition 1 The problem of deciding policy consistency
with respect to CEDTDs is in PTIME.

Proof By Theorem 1, there are two cases in which a policy
can be inconsistent. The first case can be checked by travers-
ing the graph following a topological sorting of the DTD
graph. This can be done in time polynomial in the number
of edges and vertices of the DTD graph.

The second case consists of checking if the graphs GA
are acyclic and transitive. Checking these two conditions for
each element A can be done in polynomial time. ut

10

4.2 Proof of Theorem 1

In this section we present a detailed proof of Theorem 1. We
first show the main result for SEDTDs, and then show that
the characterization can be lifted to CEDTDs. The proof for
SEDTDs requires considering many combinations of cases.
The main difficulty is in proving that syntactic consistency
implies consistency, that is, there is no way to simulate a
single forbidden operation via a sequence of allowed oper-
ations. The obvious approach by induction on the length of
the allowed sequence does not work because subsequences
of the allowed sequence do not necessarily continue to sim-
ulate the denied operation.

The solution is to establish the existence of an appro-
priate normal form for update sequences, such that (roughly
speaking):

1. The normal form of an arbitrary update sequence op ap-
plied to input t is

delete(n1); · · · ; delete(ni);
r;

insert(l1, t1), . . . , insert(lj , tj)

consisting of a sequence of deletes, then replacements,
then inserts

2. The replacements r can be partitioned into chained sub-
sequences r1, . . . , rj of the form

ri = replace(mi, u
i
1); replace(rui

1
, ui2); · · · .

3. Each ni,mj , lk is in t.
4. No deleted or replaced node (ni or mj) is an ancestor of

another of the modified nodes (ni,mj , lk)
5. Allowed update sequences have allowed normal forms.

Pictorially, a normalized update sequence can be visualized
as a tree with some of its nodes annotated with insertion
operations insert(u), deletions delete, and replacement se-
quences replace(u1, . . . , un), such that no annotation occurs
below a node with a delete or replace annotation.

Normalized update sequences are much easier to analyze
than arbitrary allowed sequences in the proof of the reverse
direction of Theorem 1.

We introduce some additional helpful notation: write

target(delete(n)) = n

target(insert(n, u)) = n

target(replace(n, u)) = n

for the target node of an operation; write≤t for the ancestor-
descendant ordering on t (that is, E∗); write ⊥t for the re-
lation {(n,m) ∈ Nt × Nt | n 6≤t m and m 6≤t n} (that
is, n ⊥t m means n and m are ≤t-incomparable). We write
op ≡ op′ to indicate that the (partial) functions [[op]](−) and
[[op′]](−) are equal; that is, for any tree t, op is valid on t
if and only if op′ is valid on t, and if both are valid, then
[[op]](t) = [[op′]](t).

Lemma 1 The laws in Figures 7, 8, and 9 are valid for
rewriting update sequences relative to a given input tree
t. Moreover, if one of the rules is applied to an update se-
quence that is allowed by a policy P , then the resulting up-
date sequence is still allowed.

Proof Proof is by case analysis. For many cases, to ensure
that the rewrites preserve validity and allowedness we need
the fact that updates only affect the types of nodes under the
target node. This is easy to show for deterministic CEDTDs.

Note that most of the identities only rearrange existing
allowed updates and do not introduce any new update op-
erations that we need to check against the policy. In a few
cases, we need to do some work to check that the rewritten
sequence is still allowed. In some cases, the rewrite rules
cover cases that cannot happen in allowed sequences: for ex-
ample, replace(n, u); delete(m) to delete(n) with m = ru
cannot happen in an allowed sequence. ut

Proposition 2 Let P be a security policy and op an allowed
update sequence mapping t to t′. Then there is an equivalent
allowed update sequence op′ that is in normal form.

Proof We can use the identities to normalize an update se-
quence as follows. First, move occurrences of inserts to the
end of the sequence. Next, move deletes to the beginning of
the sequence. Finally, we use the remaining rules to elimi-
nate dependencies among deletes, replacements and inserts,
and to build chains of replacements. The resulting sequence
is in normal form.

We say that two trees agree above n if the trees are equal
after deleting the subtree rooted at n from each. Note that for
all of the operations we consider, if op has target node n and
op is valid on t then t agrees with [[op]](t) above n.

Lemma 2 Consider a policy P with respect to a SEDTDD.
If t and t′ conforming toD are equal above n, and P allows
a sequence op that maps t to t′, then there is an equivalent,
normalized, allowed sequence op′ that only affects nodes at,
above, or below n.

Proof We show that for each node m unrelated to n, up-
dates applying directly to m can be eliminated. If a deletion
applies to m, then there must be an insertion replacing the
deleted subtree exactly, and these are the only updates af-
fecting m. Thus, it is safe to remove this useless deletion-
insertion pair. If a replacement applies tom, then there must
be subsequent replacements that restore the subtree at m.
This sequence of replacements can be eliminated. No other
possibilities are consistent with t and t′ being equal above
n. Thus, by considering each node m in the tree that is un-
related to n, and removing the updates having an effect on
m, we can obtain an equivalent update sequence op′ having
only updates whose target node is related to n. This update

11

insert(n, u); insert(m, v) ≡
{

insert(n, [[insert(m, v)]](u)) if m ∈ Nu

insert(m, v); insert(n, u) if m 6∈ Nu

insert(n, u); replace(m, v) ≡


replace(m, v) if m ≤t n
replace(m, v); insert(n, u) if m ∈ Nt, m 6≤t n

insert(n, v) if m = ru
insert(n, [[replace(m, v)]](u)) if m ∈ Nu − {ru}

insert(n, u); delete(m) ≡


delete(m) if m ≤t n

delete(m); insert(n, u) if m ∈ Nt, m 6≤t n

ε if m = ru
insert(n, [[delete(m)]](u)) if m ∈ Nu − {ru}

Fig. 7 Moving inserts forward

replace(n, u); delete(m) ≡


delete(m) if m ≤t n

delete(m); replace(n, u) if m ∈ Nt, m 6≤t n

delete(n) if m = ru
replace(n, [[delete(m)]](u)) if m ∈ Nu − {ru}

delete(n); delete(m) ≡
{

delete(m) if m ≤t n
delete(m); delete(n) if m 6≤t n

Fig. 8 Moving deletes backward

replace(n, u); replace(m, v) ≡

 replace(m, v) if m ≤t n
replace(m, v); replace(n, u) if m ∈ Nt, m 6≤t n

replace(n, [[replace(m, v)]](u)) if m ∈ Nu − {ru}

Fig. 9 Chaining and commuting replacements

sequence is still allowed since we have only removed al-
lowed operations (and since all of the operations we have
removed are independent of the remaining ones), and is still
in normal form. ut

If t, t′ agree above n, and op is an allowed sequence,
then we define the n-related normal form of op to be an
equivalent allowed, normalized sequence of operations af-
fecting the tree above or below n, which must exist by the
above lemma. We can now show the result for SEDTDs:

Lemma 3 For SEDTD-based policies, syntactic consistency
implies consistency.

Proof We prove the contrapositive. Suppose P is inconsis-
tent, and let t be a tree, op a sequence allowed on t, and op′

denied on t by P , such that [[op]](t) = [[op′]](t). We consider
the four cases for op′:

– op′ = insert(n, t). Consider the normal form of the op
restricted to the updates related to n. Clearly op cannot
consist only of updates at or below n since an insertion
at n cannot be simulated by a deletion at n or by any op-
erations that only apply below n. Also, no replacement
can happen at n. If there is a deletion above n, there
must also be an insertion above n that restores the ex-
tra deleted nodes and also has the effect of insert(n, t).
Hence there is a violation of rule 1. Otherwise, if there

is a replacement above node n, then there must be one
or more replacements restoring the rest of the tree to its
previous form and inserting t, violating rule 2b (since
the chain of replacements must be allowed by a cycle in
some graph GA)

– op′ = delete(n, t), replace(n, s). Similar to case for insert,
since again these operations cannot be simulated solely
by operations at or below n.

– op′ = replace(n, t′). There are two possibilities. If the
n-related normal form of op consists only of replace-
ments at n, then the policy must violate rule 2. Other-
wise, an argument similar to that in the above cases can
be used to show that P must violate rule 1 or 3. ut

4.2.1 Lifting to CEDTDs

We now complete the proof of Theorem 1 by showing that
there is a translation from CEDTDs to SEDTDs that asso-
ciates each CEDTD policy with a unique SEDTD policy.

To translate CEDTDs to SEDTDs, let D be a CEDTD.
We define SEDTD D◦ as follows. If A → str ∈ D then we
add A→ str to D◦. If A→ fi, . . . , fn is a rule in D, where
each f is a factor of the form B1 + · · ·+Bn or B∗, then we
translate to n+ 1 rules

A→ A1, . . . , A
′
n A′1 → f1 · · · A′n → fn

12

The set of type names ofD◦ is that ofD extended with each
of the A′i, and each new type name is associated with a fresh
node label. This translation can be lifted to a translation on
trees, by inserting intermediate nodes with appropriate la-
bels. If t is a tree over CEDTD D, then we write t◦ for the
tree over D◦ obtained by inserting appropriate intermediate
nodes (we assume some deterministic naming scheme for
the new nodes). This is analogous to the translations used in
other work on SDTDs [11].

More importantly, this translation also can be lifted to
handle atomic updates, UATs and policies. For an atomic
update, we translate as follows:

insert(n, t)◦ = insert(mi, t
◦)

delete(n)◦ = delete(n)

replace(n, t)◦ = replace(n, t◦)

replaceVal(n, s)◦ = replaceVal(n, s)

where in the case for insert, we assume η(n) = A and A→
f1, . . . , fn and fi = B∗ and t ∈ L(B), and node mi is the
child of n in t◦ associated with Ai. For the other updates,
the translation is type-insensitive.

Similarly, UATs can be translated as follows:

(A, insert(B))◦ = (Ai, insert(B))

(A, delete(B))◦ = (Ai, delete(B))

(A, replace(Bi, Bj))
◦ = (Ai, replace(Bj , Bk))

(A, replaceVal)◦ = (A, replaceVal)

where, in the case for insert and delete, we assume A →
f1, . . . , fn and fi = B∗, and in the case for replace we as-
sume that A→ f1, . . . , fn and fi = (B1 + · · ·+Bm), with
Bj , Bk among B1, . . . , Bm. If S is a set of UATs, we write
S◦ for the set of translations and we write P ◦ for (A◦,F◦).

The key property of the translation is that it preserves
consistency. To show this, we need a number of (routine)
properties:

Lemma 4 Fix a CEDTD D and policy P .

1. If T ∈ L(D) then T ◦ ∈ L(D◦).
2. If UAT ∈ valid(D) then UAT ◦ ∈ valid(D◦).
3. If op matchesηt UAT then op◦ matchesη

◦

t◦ UAT ◦, where
η◦ is the unique typing of t◦ in D◦, and [[op]](t)◦ =

[[op◦]](t◦).
4. If op is a valid run with respect to D on T then op◦ is

valid with respect toF◦ on T ◦ and [[op]](T)◦ = [[op◦]](T ◦).
5. If op ∈ [[S]](T) then op◦ ∈ [[S◦]](T ◦).
6. If op is a valid run allowed by P then op◦ is valid run

allowed by P ◦.

Lemma 5 If P is syntactically consistent then P ◦ is syntac-
tically consistent.

Proof Straightforward, by unfolding definitions.

Lemma 6 If P ◦ is consistent then P is consistent.

Proof We prove the contrapositive. If P is inconsistent, let
T be a tree, op an allowed sequence, and op a forbidden
update with [[op]](T) = [[op]](T). Then by Lemma 4, T ◦ is
a tree and op◦ is an allowed sequence and op◦ is a forbid-
den operation on T ◦, and also [[op◦]](T ◦) = [[op]](T)◦ =

[[op]](T)◦ = [[op◦]](T ◦). Hence, P ◦ is inconsistent.

Theorem 1 now follows from Lemmas 3, 5 and 6.

Remark 1 We considered a number of alternative general-
izations including full DTDs or EDTDs before settling on
CEDTDs. It turns out to be quite difficult to analyze policies
with respect to general DTDs because of the fact that indi-
vidual updates typically insert, delete or replace one node at
a time, which can temporarily invalidate the document with
respect to the DTD. In related work, Jacquemard and Rusi-
nowitch show that consistency analysis for policies where
the DTD can be temporarily violated is undecidable [15].
This suggests that there are likely to be subtle issues in in-
creasing the expressiveness of tractable schema and policy
languages.

4.3 Partial Policies

Partial policies may be smaller and easier to maintain than
total policies, but are ambiguous because some permissions
are left unspecified. Thus, there may be many ways to extend
a partial policy to a consistent total one. In this section we
consider the question of how to associate a consistent partial
policy with a unique consistent total policy.

One (unsatisfactory) solution to this problem is to deny
all of the operations that are not explicitly allowed by a par-
tial policy. However, this can easily yield an inconsistent
policy, because a UAT that is not mentioned by the policy
could be simulated by its allowed UATs. Instead, we con-
sider whether it is possible to find a total policy that only al-
lows UATs that can already be simulated by the partial pol-
icy’s allowed UATs. This approach does not add any priv-
ileges that the user did not already have according to the
partial policy, in accordance with the principle of least priv-
ilege [26].

However, it is not obvious that a partial policy (even if
consistent) has any consistent total extension. We will now
show that a consistent partial policy does have a consistent
extension, and in particular it has a unique least-privilege
consistent extension. These seem to be a natural choice for
defining the meaning of a partial policy.

For convenience, we write AP and FP for the allowed
and forbidden sets of a policy P ; i.e., P = (AP ,FP). We
introduce an information ordering P v Q, defined asAP ⊆
AQ and FP ⊆ FQ; that is, Q extends P . We say that a

13

partial policy P is semi-consistent if it has a consistent to-
tal extension. For example, a partial policy on the schema
of Figure 5 which allows (B, insert(E)), (B, delete(E)),
and denies (H, replaceVal) is not semi-consistent, because
any extension of the policy must allow (H, replaceVal) to
be consistent.

We also introduce a privilege ordering on total policies
P ≤ Q, defined as AP ⊆ AQ; that is, Q allows every op-
eration that is allowed in P . This ordering has unique great-
est lower bounds P ∧ Q defined as (AP ∩ AQ,FP ∪ FQ).
We now show that every semi-consistent policy has a least-
privilege consistent extension P †; that is, P † is consistent
and P † ≤ Q whenever Q is a consistent extension of P .

Lemma 7 If P1 and P2 extend P0 then P1 ∧P2 extends P0.

Proof Since bothP1 andP2 extendP0, we haveAP1 ,AP2 ⊇
AP0

and FP1
,FP2

⊇ FP0
; hence

AP1∧P2
= AP1

∩ AP2
⊇ AP0

∩ AP0
= AP0

FP1∧P2
= FP1

∪ FP2
⊇ FP0

∪ FP0
= FP0

This completes the proof. ut

Lemma 8 If P1, P2 are consistent total extensions of P0

then P1 ∧ P2 is also a consistent extension of P0.

Proof By the previous lemma, P1 ∧ P2 extends P0. Sup-
pose P1 ∧P2 is inconsistent. Then there exists an XML tree
t, an atomic operation op0 ∈ [[FP1∧P2

]](t), and a sequence
op allowed on t by P1 ∧ P2, such that [[op0]](t) = [[op]](t).
Now FP1∧P2 = FP1 ∪FP2 , so op0 must be forbidden (with
respect to some typing η) by either P1 or P2. On the other
hand, opmust be allowed (with respect to some initial typing
η) by both P1 and P2, so t, op0, op forms a counterexample
to the consistency of P1 (or symmetrically P2). ut

Proposition 3 Each semi-consistent partial policy P has a
unique ≤-least consistent total extension P †.

Proof Since P is semi-consistent, the set S = {Q | P v
Q,Q total and consistent} is finite, nonempty, and closed un-
der ∧, so has a ≤-least element P † =

∧
S. ut

In the rest of this section, we show how to find the least-
privilege consistent extension, or determine that none exists
(and hence that the partial policy is not semi-consistent). The
basic idea is to define an explicit transformation T on poli-
cies that adds allowed UATs that can be simulated by other
allowed UATs. Define the operator T : P(valid(D)) →
P(valid(D)) as:

T (S) = S

∪ {(C, ut) | B ≤D C,B∗ ∈ RgD(A),
{(A, insert(B)), (A, delete(B))} ⊆ S}

∪ {(C, ut) | Bi ≤D C, (B1 + . . .+Bn) ∈ RgD(A),
(Bi, Bi) ∈ G+A (S)}

∪ {(A, replace(Bi, Bk)) | (B1 + . . .+Bn) ∈ RgD(A),
(Bi, Bk) ∈ G+A (S)}

Clearly, T is monotonic, so has a least fixed point T ∗

on the finite lattice P(valid(D)). The aim of the next se-
quence of lemmas is to show that if P is consistent then
T ∗ = P †, while if P is not semi-consistent then T ∗ over-
laps with FP . Thus, computing T ∗ will give us a PTIME

algorithm for either computing P † or determining that P is
not semi-consistent.

Since T ∗ calculates a fixed point, it is closed under appli-
cations of the rules (1)–(3) characterizing consistency. Hence,
for any S, we obtain a consistent policy by allowing T ∗(S)
and forbidding its complement. We define

(A,F)∗ = (T ∗(A), valid(D) \ T ∗(A)) .

Lemma 9 Let S be a set of privileges. Then T (S) = S if
and only if (S, valid(D) \ S) is consistent. Moreover, P ∗ is
a consistent policy over D.

Proof For the first part, suppose T (S) = S. Then by in-
spection, S satisfies the conditions of Theorem 1 and so
(S, valid(D) \ S) is consistent. Conversely if (S, valid(D) \
S) is consistent then the conditions of Theorem 1 imply that
T (S) = S. The second part is immediate.

Corollary 1 For any semi-consistent partial policy P , we
have P † = P ∗.

Proof Assume P is semi-consistent and let S = AP . Let
P † = (A†,F†) be its least-privilege consistent extension.
Since P ∗ is consistent, total and P ≤ P ∗, it follows that
P † ≤ P ∗, since P † is the least consistent total extension
of P . Conversely, observe that T ∗(A†) = A† since P † is
syntactically consistent. Hence, A† is a fixed point of T so
T ∗(A†) ⊆ A† since T ∗(A†) is the least fixed point of T ∗

extending A†. This implies P ∗ ≤ P †. To conclude, P ∗ =

P † since ≤ is anti-symmetric on total policies.

Next, we observe that the updates licensed by T ∗(S) can
always be simulated by sequences of updates in S.

Lemma 10 If uat ∈ T ∗(S) then any operation op0 match-
ing uat on t can be simulated using a sequence of opera-
tions op that is valid and allowed on t by S (that is, such
that [[op0]](t) = [[op]](t)).

14

Proof First, assume uat ∈ T (S). We prove the consequence
by cases according to the definition of T . If uat ∈ S then
there is nothing to do.

If for some A, B we have uat = (C, op) with B ≤D C,
with B∗ ∈ RgD(A) and {(A, insert(B)), (A, delete(B))}
⊆ S, then let n = target(op0), let m be the B-labeled
node above m in t (there must be exactly one), and let t′

be the subtree of t rooted at m. We can simulate op0 by
deleting the B-labeled subtree to which op0 applies, then
inserting the tree resulting from applying op0; thus, the se-
quence op = delete(m); insert(n, [[op0]](t

′)) simulates op0
and is allowed.

If for someA,B we have uat = (C, op) withBi ≤D C,
and (B1 + . . . + Bn) ∈ RGD(A), and (Bi, Bi) ∈ G+A (S),
then let Bi1 , . . . , Bik be a cycle in GA beginning and end-
ing with Bi. Again let n = target(op0) and let m be the
(unique) Bi-labeled node above n, and t′ be the subtree of t
rooted atm. Let t1, . . . , tk−1 be arbitrary trees disjoint from
t and satisfying tj ∈ ID(Bij). (The latter sets are always
nonempty so such trees may be found.) Now consider the
update sequence

op = replace(m, t1); replace(rtt1 , t2);
...
replace(rttn−2

, tn−1); replace(rttn−1, [[op0]](t
′))

This update sequence is allowed on t and simulates op0.
Finally, if uat = (C, replace(Bi, Bj)) where (B1 +

· · · + Bn) ∈ RgD(C) and (Bi, Bj) ∈ G+C (S) then let
n = target(op0) and let t′ be the subtree rooted at n. Let
Bi1 , . . . , Bik be a sequence of nodes forming a path from
Bi = Bi1 to Bj = Bik in GC , and choose t1, . . . , tk−1 sat-
isfying tl ∈ ID(Bil). Then the update sequence

op = replace(n, t1); replace(rtt1 , t2);
...
replace(rttn−2

, tn−1); replace(rttn−1, [[op0]](t
′))

again is allowed and simulates op0.
Now, if uat ∈ T ∗(S), then the conclusion follows by

induction. ut

Finally, we show that we can determine (semi-)consistency
using T ∗. Along the way we show that semi-consistency and
consistency are equivalent.

Theorem 2 Let P be a partial policy. The following are
equivalent: (1) P is semi-consistent, (2) P is consistent, and
(3) T ∗(AP) ∩ FP = ∅.

Proof To show (1) implies (2), ifP ′ is a consistent extension
of P , then any inconsistency in P would be an inconsistency
in P ′, so P must be consistent. To show (2) implies (3), we
prove the contrapositive. If T (AP) ∩ FP 6= ∅ then choose
uat ∈ T (AP) ∩ FP . Choose an arbitrary tree t and atomic

update op satisfying op0 ∈ [[uat]](t). By Lemma 10, there
exists a sequence op allowed by AP on t with [[op]](t) =

[[op0]](t). Hence, policy P is inconsistent. Finally, to show
that (3) implies (1), note that (T (AP), valid(D) \ T (AP))
is consistent (by Lemma 9) and extends P (by Lemma 8)
since T ∗(AP)∩FP = ∅ implies FP ⊆ valid(D)\T ∗(AP).

ut

Since each step of T is computable in PTIME and the number
of elements of valid(D) is polynomial in the size of D, we
can compute T ∗ in polynomial time using least fixed-point
iteration. Hence, we can decide whether a partial policy is
(semi-)consistent and if so find P † in PTIME.

In fact, the T operator as defined above is idempotent,
but this is not needed for the results above.

5 Policy Repairs for SEDTDs

If a policy is inconsistent, we would like to suggest possible
minimal ways of modifying it in order to restore consistency.
In other words, we would like to find repairs that are as close
as possible to the inconsistent policy.

There are several ways of defining these repairs. We might
want to repair by changing the permissions of certain opera-
tions from allowed to forbidden and vice versa; or we might
give preference to some type of changes over others. Also,
we can measure the minimality of the repairs as a minimal
number of changes or a minimal set of changes under set
inclusion.

In this article we will focus on finding repairs that trans-
form UATs from allowed to forbidden and that minimize the
number of changes. We believe that such repairs are a use-
ful special case, since the repairs are guaranteed to be more
restrictive than the original policy.

Definition 11 A policy P ′ = (A′,F ′) is a repair of a policy
P = (A,F) defined over a CEDTD D if and only if:

1. P ′ is a policy defined over D,
2. P ′ is consistent, and
3. P ′ ≤ P .

A repair is total if F ′ = valid(D) \ A′ and partial oth-
erwise. Furthermore a repair P ′ = (A′,F ′) of P (A,F)
is a minimal-total-repair if there is no total repair P ′′ =

(A′′,F ′′) such that |A′|< |A′′| and a minimal-partial-repair
if F ′ = F and there is no partial repair P ′′ = (A′′,F) such
that |A′| < |A′′|.

Given a policy P = (A,F) and k > 0, the total-repair
(partial-repair) problem consists in determining if there ex-
ists a total-repair (partial-repair) P ′ = (A′,F ′) of policy P
such that |A\A′| < k. This problem can be shown to be NP-
hard by reduction from the edge-deletion transitive-digraph
problem [30].

15

Theorem 3 The total-repair and partial-repair problems for
policies over SEDTDs are NP-complete.

Proof We will concentrate on the total-repair problem. The
proof for the partial-repair problem is analogous.

First we will prove that the total-repair is in NP. We can
determine if there is a repair P ′ = (A′,F ′) of P such that
|A\A′| < k, by guessing a policy P ′, checking if |A\A′| <
k and if it is consistent. Since consistency and the distance
can be checked in polynomial time, the algorithm is in NP.

To prove that the problem is NP-hard, we reduce from
the edge-deletion transitive-digraph problem which is NP-
complete [29, 30]. The problem consists in, given a directed
graph G = (V, E) with V = {v1, . . . , vn} and E a set of
edges without self-loops, determine if there exists a set G′ =
(V, E ′) such that E ′ ⊆ E , G′ is transitive and |E \ E ′| < k.
Now, let us define a DTD D and a policy P . The production
rules of D are:

A → v1 + · · ·+ vn
vi → str for i ∈ [1, n]

The policy P = (A,F) is such that

A = {(A, replace(vi, vj))|(vi, vj) ∈ E}
∪ {(vi, replaceVal) | vi ∈ V}

F = valid(D) \ A .

It is easy to see that GA = G and therefore finding a repair
will consist of finding the minimal number of edges to delete
from G to make the graph transitive. ut

If the SEDTD has no disjunction in its production rules
then the only type of inconsistencies arise when an opera-
tion is denied below an element type that is allowed to be
inserted and deleted (case 1 of Definition 10). In this case
the distance between the policy and its minimal repair will
be equal to the number of such inconsistencies. Thus, the
total-repair problem in this case is in PTIME.

5.1 Computing Minimal Repairs

For a policy P defined over a schema D we will construct
a disjunctive logic program with weak negation such that
there is a one-to-one correspondence between each model
of it and the repairs of P . Satisfying models with minimal
violations of weak constraints can be found by answer-set
programming solvers such as DLV [19], and we will use
DLV syntax. Upper and lower case letters denote variables
and constants respectively. The program uses predicates: (i)
UAT to store the valid UATs; (ii) a and d to store the al-
lowed and denied UATs respectively; (iii) desc to store the
subelement relation between element types; (iv) rA and rD

to contain the allowed and forbidden UATs in the repair.

Definition 12 Given a DTD D and a (partial) policy P =

(A,F) let the repair program be Π(D,P) = Πf(D,P) ∪
Πr where:
1. Πf(D,P) contains the following facts:
UAT (a, ins, b, null). for every (a, insert(b)) ∈ valid(D)

UAT (a, del, b, null). for every (a, delete(b)) ∈ valid(D)
UAT (a, rep, b, c). for every (a, replace(b, c)) ∈ valid(D)

a(a, ins, b, null) for every (a, insert(b)) ∈ A
a(a, del, b, null) for every (a, delete(b)) ∈ A
a(a, rep, b, c) for every (a, replace(b, c)) ∈ A
a(a, repV, null, null) for every (a, replaceVal) ∈ A
d(a, ins, b, null) for every (a, insert(b)) ∈ F
d(a, del, b, null) for every (a, delete(b)) ∈ F
d(a, rep, b, c) for every (a, replace(b, c)) ∈ F
d(a, repV, null, null) for every (a, replaceVal) ∈ F
desc(a, b). for every type a and b such that a ≤D b

2. Πr contains the following rules:

rD(X,Op,E1, E2) ∨ rA(X,Op,E1, E2)← a(X,Op,E1, E2). (1)

rD(X,Op,E1, E2)← d(X,Op,E1, E2). (2)

rA(Z,Op,E1, E2)← rA(X, ins, Y, null), rA(X, del, Y, null),

desc(Y, Z),UAT (Z,Op,E1, E2). (3)

rA(X, rep, Y,W)← rA(X, rep, Y, Z), rA(X, rep, Z,W). (4)

rA(W,Op,E1, E2)← rA(X, rep, Y, Z), rA(X, rep, Z, Y),

desc(Y,W),UAT (W,Op,E1, E2). (5)

← rD(X,Op,E1, E2), rA(X,Op,E1, E2). (6)

rD(Z,Op,E1, E2)← UAT (Z,Op,E1, E2),

not rA(Z,Op,E1, E2). (7)

⇐ a(X,Op,E1, E2), rD(X,Op,E1, E2). (8)

Rules (1) and (2) are used to construct all possible policies
obtained from policy P by keeping all denied operations as
denied but letting allowed operations to be changed to either
allowed or denied. This implements our choice of looking
for repairs that are more restrictive than the policy that we
are trying to repair. Rules (3), (4) and (5) make sure that the
repairs have no inconsistencies. Indeed, rule (3) ensures that
if it is possible to insert and delete a certain element type,
then all the operations below it should be allowed; rule (4)
forces the replace graphs to be transitive; and rule (5) checks
that if an element type belongs to a cycle, then everything is
allowed below it. The denial constraint (6) makes sure that
no operation is both allowed and denied in the repair. Rule
(7) computes a total policy if P was partial. Finally, rule
(8) corresponds to a weak constraint that ensures that the
number of permissions that are modified is minimized. A
weak constraint is of the form⇐ ϕ, where ϕ is a conjunc-
tion of atoms. The weak constraint is violated every time an
assignment makes ϕ true in a model. The models of a pro-
gram with weak constraints correspond to the answer sets
that minimize the violations of the weak constraints. Note
that only Πf(D,P) depends on the schema and the policy,
since the rules in Πr are independent.

Given a schema D and a policy P , the repair PM =

(AM,FM) associated to an optimal answer sets modelM
ofΠ(F , P) is obtained from the rA and rD predicates. This

16

is, AM and FM contain all the UATs in rA and rD respec-
tively. Every policy PM obtained from an optimal answer
set M of Π(D,P) is a minimal repair of policy P . Further-
more, for every minimal repair P ′ of policy P there exists
an optimal answer set M of Π(D,P) such that PM = P ′.

Example 5 (example 4 continued) Program Πf(D,P) con-
tains the following facts:
UAT (r, rep, a, b).

UAT (r, rep, b, k).

UAT (c, del, f, null).
. . .
a(r, rep, a, b).

a(r, rep, b, j)
a(c, ins, a, null).

a(c, del, f, null).

a(h, repV, null, null)

. . .
d(r, rep, b, k).

d(g, rep, h, i).

. . .
desc(a, a).

desc(a, r).

desc(c, r).

desc(c, a).
desc(f, a).

. . .

Program Π(D,P) has 16 optimal answer set models that
have a 1-1 correspondence with the minimal repairs which
are obtained by the combination of denying:

1. (B, insert(E)) or (B, delete(E));
2. (J, insert(G)) or (J, delete(G));
3. (E, insert(G)) or (E, delete(G)); and
4. {(R, replace(A,B)), (R, replace(J,K))} or
{(R, replace(B, J)), (R, replace(J,K))}.

The first three resolve inconsistencies that correspond to vi-
olations of condition (1) of Definition 10. The fourth corre-
sponds to violations of condition (2a). �

Finally, note that a simple variation of the above ap-
proach can be used to test whether a (partial) policy is con-
sistent, simply by replacing the rules Πr with the following
Πc:

a(Z,Op,E1, E2)← a(X, ins, Y, null), a(X, del, Y, null),

desc(Y, Z),UAT (Z,Op,E1, E2). (9)

a(X, rep, Y,W)← a(X, rep, Y, Z), a(X, rep, Z,W). (10)

a(W,Op,E1, E2)← a(X, rep, Y, Z), a(X, rep, Z, Y),

desc(Y,W),UAT (W,Op,E1, E2). (11)

d(Z,Op,E1, E2)← UAT (Z,Op,E1, E2),

not a(Z,Op,E1, E2). (12)

i(X,Op,E1, E2)← a(X,Op,E1, E2), d(X,Op,E1, E2). (13)

This is a stratified Datalog program that has a solution con-
taining a tuple i(X,Op,E1, E2) for every inconsistent UAT.

5.2 Approximate Algorithms for Minimal Repairs

In this section we discuss a polynomial repair algorithm that
finds a repair of a total or partial policy which is not neces-
sarily minimal but tries to minimize the number of changes.

The algorithm to compute a minimal repair of a policy
relies on the independence property mentioned earlier, be-
tween insert/delete (Definition 10, condition (1)) inconsis-
tencies and replace (Definition 10, conditions (2a) and (2b))

operations. As a result, a local repair of an inconsistency
w.r.t. insert/delete operations will never solve nor create an
inconsistency with respect to a replace operation and vice-
versa. We will separately describe the algorithm for repair-
ing the insert/delete inconsistencies and then the algorithm
for the replace ones.

Both algorithms make use of the marked DTD graph
MGD = (GD, µ, χ) µ is a function from nodes in VD to
{“+”, “−”} and χ is a function from VD to {−1,⊥}. In
a marked graph for a DTD D and a policy P = (A,F),
each node in the graph is either marked with “+” (i.e., noth-
ing is forbidden below the node) or with a “−” (i.e., there
exists at least one update access type that is forbidden be-
low the node). If, for nodes A and B in the DTD, both
(A, insert(B)) and (A, delete(B)) are in A and µ(A) =

“−”, then χ(A) = “⊥”. A marked graph is obtained from
algorithm markGraph which takes as input a DTD graph
and a policy P and traverses the DTD graph starting from
the nodes with out-degree 0 and marks the nodes and edges
as discussed above.

Algorithm 1 markGraph
Input: DTD Graph GD , Policy P = (A,F)
Output: Marked DTD Graph MGD = (GD, µ, χ)
1: Let visited(A) = µ(A) = χ(A) = −1 for every A ∈ VD
2: MGD = (GD, µ, χ)

3: for all (A,Op) ∈ F do
4: µ(A) = 0

5: markNode(MGD, visited,GD.root)
6: for all A ∈ VD and B ∈ VD do
7: if (A, insert(B)) ∈ A, (A, delete(B)) ∈ A and µ(A) = 0 then
8: χ(A) = ‘⊥′
9: return MGD

Example 6 Consider the graph for DTD D in Fig. 10(a) and
policy P = (A,F), with A defined in Example 3. The
result of applying markGraph to this DTD and policy
is shown in Fig. 10(b). Notice that nodes B, E and J are
marked with both a “−” and “⊥” since i) update access type
(G, replace(H, I)) is inF and ii) all insert and delete update
access types for B, E and J are in A. For readability pur-

Algorithm 2 markNode
Input: Marked DTD Graph MGD = (GD, µ, χ), function visited,

Node A.
Output: The subtree rooted in A is marked
1: if visited(A) < 0 then
2: for all (A,B) ∈ ED do
3: markNode(MGD, B)
4: if µ(B) = 0 then
5: µ(A) = 0

6: if µ(A) = −1 then
7: µ(A) = 1

8: visited(A) = 1

17

A B

C D E

F G

R

H I

str

J

str

K

str

(a)

A B

C D E

F G

R

H I

str

J

str

K

str

-

+

+ +

+

+ +

-

-,⊥

-,⊥ -,⊥

(b)

+

str str

Fig. 10 DTD Graph (a) and Marked DTD Graph (b) for the DTD in
Fig. 5

Algorithm 3 InsDelRepair
Input: DTD graph GD , security policy P
Output: Set of UATs to remove from P to restore consistency in P

w.r.t. insert/delete inconsistencies
1: MGD ←markGraph(GD, P)
2: changes ← ∅
3: for all A ∈ VD and (A,B) ∈ ED do
4: if χ(A) = “⊥” then
5: Randomly choose either (A, insert(B)) or (A, delete(B))

and assign it to U
6: changes ← changes ∪ U
7: return changes

poses we do not show the multiplicities in the marked DTD
graph. �

5.2.1 Repairing Inconsistencies for Insert and Delete
Operations

Recall that if both the insert and delete operations are al-
lowed at some element type and there is some operation
below this type that is not allowed, then there is an incon-
sistency (see Definition 10, condition 1). The marked DTD
graph provides exactly this information: a node A is labeled
with “⊥” if it is inconsistent w.r.t. insert/delete operations.
For each such node and for the repair strategy that we have
chosen, the inconsistency can be minimally repaired by re-
moving either (A, insert(B)) or (A, delete(B)) fromA. Al-
gorithm InsDelRepair takes as input a DTD graph GD
and a security policy P = (A,F) and returns a set of UATs
to remove from A to restore consistency w.r.t. insert/delete
inconsistencies.

Example 7 Given the marked DTD graph in Fig. 10(b), it is
easy to see that the UATs that must be repaired are associated
with nodesB, J andE (all nodes are marked with “⊥”). The
repairs that can be proposed to the user are to remove from
A one UAT from each of the following sets:

{(B, insert(E)), (B, delete(E))}
{(E, insert(G)), (E, delete(G))}
{(J, insert(G)), (J, delete(G))}

Algorithm 4 ReplaceNaive
Input: Node R, Marked Graph MGD

Output: Set Sol containing pairs (B, Edel) where B is a node reach-
able from R in MGD , and Edel a set of edges to delete from GB
to make it consistent

1: if Rg(R) := B1 +B2 . . .+Bn then
2: Let GR be the replace graph for R
3: Edel ← ∅
4: Let stack S contain all the nodes in c
5: while S not empty do
6: B ← S.pop()

7: for all A in VR, s.t. (A,B) ∈ ER \ Edel do
8: for all C ∈ VR, s.t. (B,C) ∈ ER \ Edel do
9: /* If there is an edge missing for transitive or if there

is a cycle over a node with a UAT forbidden below */
10: if A 6= C or µ(A) = “−” then
11: Let e be one of (A,B), (B,C) (chosen randomly)
12: Edel = Edel ∪ {e}
13: for all F ∈ VR s.t. F is reachable from the start

vertex of e in GR do
14: S.push(F)

15: Sol← {(R, Edel)}
16: else
17: Sol← ∅
18: for all (R,B) ∈ ER do
19: Sol← Sol ∪ReplaceNaive(B,MGD)
20: return Sol

�

5.2.2 Repairing Inconsistencies for Replace Operations

There are two types of inconsistencies related to replace op-
erations (see Definition 10, conditions (2a)–(2b)): the first
arises when some element A is contained in some cycle and
something is forbidden below it; the second arises when the
replace graph GA cannot be extended to a transitive graph
without adding a forbidden edge in F . In what follows we
will refer to these type of inconsistencies as negative-cycle
and forbidden-transitivity. By Theorem 3, the repair prob-
lem is NP-complete, and therefore, unless P = NP, there is
no polynomial time algorithm to compute a minimal repair
to the replace inconsistencies. Our objective then, is to find
an algorithm that runs in polynomial time and computes a
repair that is not necessarily minimal.

Algorithm ReplaceNaive traverses the marked graph
MGD and at each node, checks whether its production rule
is of the formA→ B1+. . .+Bn. If this is the case, it builds
the replace graph GA for A, and runs a modified version
of the Floyd-Warshall algorithm [12]. The original Floyd-
Warshall algorithm adds an edge (B,D) to the graph if there
is a nodeC such that (B,C) and (C,D) are in the graph and
(B,D) is not. Our modification consists on deleting either
(B,C) or (C,D) if (B,D) ∈ FA, i.e., if there is forbidden-
transitivity. In this way, the final graph will satisfy condition
(2a) of Definition 10. Also, if there are edges (B,C) and
(C,B) and µ(C) = “−”, i.e., there is a negative-cycle, one

18

of the two edges is deleted. Algorithm ReplaceNaive re-
turns the set of edges to delete from each node to remove
replace inconsistencies.

Example 8 The replace graph GG has no negative-cycles nor
forbidden-transitivity, therefore it is not involved in any in-
consistency. On the other hand, the replace graph GR =

(V, E), shown in Fig. 11(a) is the source of many inconsis-
tencies. A possible execution of ReplaceNaive (shown in
Fig. 12) is: (A,B), (B, J) ∈ E but (A, J) ∈ F , so (A,B) or
(B, J) should be deleted, say (A,B). Now, (B, J), (J,K)

∈ E and (B,K) ∈ F , therefore we delete either (B, J) or
(J,K), say (B, J). Next, (K,J), (J,K) ∈ E and µ(J) =

“−” in Fig. 10(b), therefore there is a negative-cycle and ei-
ther (K,J) or (J,K) has to be deleted. If (K,J) is deleted,
the resulting graph has no forbidden-transitive and nor negative-
cycles. The policy obtained by removing (R, replace(A,B)),
(R, replace(B, J)) and (R, replace(J,K)) from A has no
replace inconsistencies. �

The ReplaceNaive algorithm might remove more than
the necessary edges to achieve consistency: in our example,
if we had removed edge (B, J) at the first step, then we
would have resolved the inconsistencies that involve edges
(A,B), (B, J) and (J,K).

ReplaceSetCover is an alternative to ReplaceNaive

that can find a solution closer to a minimal repair. This algo-
rithm also uses a modified version of the Floyd-Warshall al-
gorithm. In this case, the modification consists in computing
the transitive closure of the replace graph GA and labelling
each newly constructed edge e with a set of justifications
J . Each justification contains sets of edges of GA that were
used to add e in G+A . Also, if a node is found to be part of a
negative-cycle, it is labelled with the justifications J of the
edges in each cycle that contains the node. An edge or ver-
tex might be justified by more than one set of edges. In fact,
the number of justifications an edge or node might have is
O(2|E|). To avoid the exponential number of justifications,
ReplaceSetCover assigns at most J justifications to each
edge or node, where J > 0 is a given parameter. This new la-
belled graph is then used to construct an instance of the min-
imum set cover problem (MSCP) [24]. The solution to the
MSCP can be used to determine the set of edges to remove
from GA so that none of the justifications that create incon-
sistencies are valid anymore. Because of the upper bound J

on the number of justifications, it might be the case that the
graph still has forbidden-transitive or negative-cycles. Thus,
the justifications have to be recomputed and the set cover
run again until there are no more replace inconsistencies.

Example 9 For J = 1, the first computation of justifications
of ReplaceSetCover results in the graph in Fig. 11 (b)

Algorithm 5 ReplaceSetCover
Input: Node R, marked DTD graph MGD , integer J
Output: Set Sol containing pairs (B, Edel) where B is a node reach-

able from R in MGD , and Edel a set of edges to delete from GB
to make it consistent

1: Sol← ∅, Edel ← ∅, done← false
2: if Rg(R) := B1 +B2 . . .+Bn then
3: Let GR = (V, E) be the replace graph for R
4: G ← GR
5: while ¬done do
6: G+ ← ComputeJustifications(G, J)
7: /* Algorithm setCoverAlg takes the graph G+ with the

justifications and the set of forbidden edges and returns the
edges to delete from GA */

8: FR ← denied edges (edges that do not belong to GR)
9: Esc ← setCoverAlg(G+,FR)

10: if Esc 6= ∅ then
11: remove edges in Esc from G
12: Edel ← Edel ∪ Esc
13: else
14: done = true
15: Sol← Sol ∪ {(R, Edel)}
16: for all (R,B) ∈ ER do
17: Sol← Sol ∪ReplaceSetCover(B,MGD, J)
18: return Sol

with the following justifications:

J ((A, J)) = {{(A, B), (B, J)}}
J ((A, K)) = {{(A, B), (B, J), (J, K)}}
J ((B, K)) = {{(B, J), (J, K)}}
J ((J, B)) = {{(J, K), (K, B)}}

J (B) = {{(B, J), (J, K), (K, B)}}
J (J) = {{(J, K), (K, J)}}

Justifications for edges represent violations of transitivity.
Justification for nodes represent negative-cycles. If we want
to remove the inconsistencies, it is enough to delete one edge
from each set in J . �

The previous example shows that, for each node A, replace
inconsistencies can be repaired by removing at least one
edge from each of the justifications of edges and vertices
in G+A . It is easy to see that this problem can be reduced to
the MSCP. An instance of the MSCP consists of a universe
U and a set S of subsets of U . A subset C of S is a set cover if
the union of the elements in it is U . A solution of the MSCP
is a set cover with the minimum number of elements.

The set cover instance associated to G+A = (V, E) and
the set of forbidden edges FA is MSCP(G+A ,FA) = (U ,S)
where

1. U = {s | s ∈ J (e), e ∈ FA}∪{s | s ∈ J (V), V ∈ V},
and

2. S = {I(e) | e ∈ E} where I(e) = {s | s ∈ U , e ∈ s}.
Intuitively, U contains all the inconsistencies, and the set
I(e) the replace inconsistencies in which an edge e is in-
volved. In this instance of the MSCP, the U is a set of justi-
fications, therefore, S is a set of sets of justifications.

19

A B J K

R
G

A B J K

R
G +

(a) (b)

Fig. 11 Replace GR (a) and Transitive Replace Graph G+R (b)

A B J K

A B J K

A B J K

A B J K

(a)

(b)

(c)

(d)

Fig. 12 Execution of ReplaceNaive on GR

Algorithm 6 ComputeJustifications
Input: Replace Graph GR, Maximum Number of Justifications J
Output: G+R , i.e., transitive closure of GR where each edge and node

is labelled with a set J containing at most J justifications per edge

1: /* Initialize */
2: E ← ∅
3: for all A ∈ VR and B ∈ VR do
4: if (A,B) ∈ ER then
5: J ((A,B))← {{(A,B)}}
6: else
7: J (A,B)← ∅
8: /* Compute justifications of cycles and missing edges */
9: for all A ∈ VR do

10: for all B ∈ VR, s.t. (B,A) ∈ ER ∪ E and A 6= B do
11: for all C ∈ VR, s.t. (A,C) ∈ ER ∪ E an A 6= C do
12: if (B,C) 6∈ ER then
13: if (B,C) 6∈ E and B 6= C then
14: E ← E ∪ {(B,C)}
15: for all j1 ∈ J ((B,A)) and j2 ∈ J ((A,C)) do
16: if |J ((B,C))| < J then
17: J ((B,C))← J ((B,C)) ∪ {j1 ∪ j2}
18: /* Assign justifications to nodes involved in negative cycles */
19: for all A ∈ VR do
20: if µ(A) = “−” then
21: J (A)← J (A,A)
22: else
23: J (A)← ∅
24: G+R ← (VR, ER ∪ E)

25: return G+R

Example 10 The minimum set cover instance for the ongo-
ing example MSCP(G+R , E) = (U ,S), is such that
U = {{(A,B), (B, J), (J,K)}, {(A,B), (B, J)},

{(B, J), (J,K)}, {(J,K), (K,B)}, {(J,K), (K, J)},
{(K, J), (J,K)}, {(B, J), (J,K), (K,B)}}

S = {I((A,B)), I((B, J)), I((J,K)),

I((K, J)), I((K,B))} .

The extensions of I are given in Table 3, where each col-
umn corresponds to a set I and each row to an element in U .
Values 1 and 0 in the table represent membership and non-
membership respectively. A minimum set cover of MSCP(G+R)
is C = {I(B, J), I(J,K)}, since I(B, J) covers all the el-
ements of U except for the element {(A,B), (B, J)}, which
is covered by I(J,K). Now, using the solution from the
set cover, we remove edges (B, J) and (J,K) from GR. If
we try to compute the justifications once again, it turns out
that there are no more negative-cycles and that the graph is
transitive. Therefore, by removing (R, replace(B, J)) and
(R, replace(J, K)) from A, there are no replace inconsis-
tencies in node R. �

The set cover problem is MAXSNP-hard [24], but its solu-
tion can be approximated in polynomial time using a greedy-
algorithm that can achieve an approximation factor of log(n)
where n is the size of U [8]. In our case, n is O(J× |Ele|).
In the ongoing example, the approximation algorithm of the
set cover will return a cover of size 2. This is better than
what was obtained by the ReplaceNaive algorithm.

Algorithm ReplaceRepair will compute the set of UATs
to remove from A, by using either ReplaceNaive (if J =

0) or ReplaceSetCover (if J > 0).

5.2.3 Computation of a Repair

Algorithm Repair computes a new consistent policy P ′ =
(A′,F ′) from P = (A,F) by removing from A the union
of the UATs returned by algorithms InsDelRepair and

20

S
U I((A,B)) I((B, J)) I((J,K)) I((K, J)) I((K,B))

{(A,B), (B, J), (J,K)} 1 1 1 0 0
{(A,B), (B, J)} 1 1 0 0 0
{(B, J), (J,K)} 0 1 1 0 0
{(J,K), (K,B)} 0 0 1 0 1
{(J,K), (K, J)} 0 0 1 1 0
{(K, J), (J,K)} 0 0 1 1 0

{(B, J), (J,K), (K,B)} 0 1 1 0 1

Table 3 Set cover problem

Algorithm 7 ReplaceRepair
Input: DTD graphGD , security policy P = (A,F), Maximum Num-

ber of Justifications J
Output: Set of UATs to remove from A to restore consistency in P

w.r.t. replace inconsistencies
1: MGD ←markGraph(GD, P)

2: if J = 0 then
3: Sol ← ReplaceNaive(rD,MGD)

4: else
5: Sol ← ReplaceSetCover(rD,MGD, J)
6: ∆← ∅
7: for all (A, Edel) ∈ Sol do
8: for all (B1, B2) ∈ Edel do
9: ∆← ∆ ∪ (A, replace(B1, B2))

10: return ∆

Algorithm 8 Repair
Input: DTD graph GD , security policy P = (A,F), boolean total,

maximum number of justifications J
Output: A repair P ′ of P . The repair is total if parameter total= 1,

partial otherwise.
1: ∆ ← InsDelChecking(GD, P)∪ReplaceRepair(GD, P, J)

2: A′ ← A−∆
3: if total then
4: F ′ ← valid(D)−A′
5: else
6: F ′ ← F ∪∆
7: P ′ ← (A′,F ′)
8: return P ′

ReplaceRepair. If argument total of algorithm Repair

is true, then the repair returned by it will be total. If false,
then a partial policy such that F ′ = F will be returned.

Theorem 4 Given a total (partial) policyP , algorithm Repair

returns a total (partial) repair of P .

Proof Given an inconsistent policy P = (A,F), let us as-
sume, to obtain a contradiction, that the policyP ′ = (A′,F ′)
returned by algorithm Repair is not a repair. Since P ′ is de-
fined over D, and by construction P ′ ≤ P , this implies that
P ′ is not consistent. Then, it should be the case that either
the changes returned by:

1. InsDelRepair do not solve all the insert/delete incon-
sistencies. This implies that there is a node A with pro-
duction rule A → B∗ such that (A, insert(B)) ∈ A′,

(A, delete(B)) ∈ A′ and there is at least one forbidden
UAT, say (C, op), such that B ≤D C. Since P ′ ≤ P ,
we know (A, insert(B)) ∈ A and (A, delete(B)) ∈ A.
If we prove that there is always an operation (G, op) ∈
F such that B ≤D G, the marked DTD graph would
be such that χ(A) = ⊥. Then, either (A, insert(B)) or
(A, delete(B)) would have been in the changes returned
by InsDelRepair and one of them would not have be-
longed to P ′. Now we will prove that such (G, op) al-
ways exists. If (C, op) ∈ F , then (G, op) = (C, op).
On the other hand, if (C, op) 6∈ F then (C, op) is ei-
ther one of the changes returned by InsDelRepair or
ReplaceRepair:
(a) If (C, op) was a change returned by InsDelRepair,

then there was an insert-delete inconsistency, and there
is another UAT (F, op2) ∈ F such that C ≤D F .
As a consequence B ≤D F , hence (G, op).

(b) If (C, op) was a change returned by ReplaceRepair

this would mean that (C, op) was either involved in a
negative-cycle or forbidden-transitivity. The former
implies there is another UAT (F, op2) ∈ F such that
C ≤D F . Then, B ≤D F , and we have found
(G, op). The latter case implies there is at least one
other (C, op2) ∈ F . We have found (G, op).

2. ReplaceRepair do not solve all the replace inconsis-
tencies: This implies that there is a node A with pro-
duction rule A → B1 + · · · + Bn such that one of the
following holds:
(a) There is an edge (Bi, Bj) in G+A forP ′, s.t. (Bi, Bj) ∈
F ′A. If (Bi, Bj) ∈ FA, then ReplaceRepair would
have deleted at least one edge from each justification
of (Bi, Bj), and therefore, (Bi, Bj) could not be in
G+A for P ′. On the other hand, if (Bi, Bj) 6∈ FA, then
(A, replace(Bi, Bj)) implies that it was part of the
changes returned by ReplaceRepair. Since both
ReplaceNaive and ReplaceSetCover check that
the final graph has no forbidden-transitivity, this is
not possible.

(b) There is a Bi which is part of a cycle in GA for P ′

and there is a UAT (C, op) ∈ F ′ s.t. Bi ≤D C.
Since Bi is in a cycle in GA for P ′, it should be part
of a cycle in GA for P . If (C, op) ∈ F , then the

21

inconsistency would have been solved already. On
the other hand, if (C, op) 6∈ F , then (C, op) is either
one of the changes returned by InsDelRepair or
ReplaceRepair. By an analogous reasoning as in
cases 1(a)-1(b), this is not possible either.

Therefore, P ′ is consistent and is a repair of P . ut

6 Implementation and Experimental Evaluation

We implemented the consistency checking and repair algo-
rithms, for partial and total policies, in a system called AC-
Con, short for Access Control CONsistency. In ACCon the
user can load a DTD or XML Schema (which is internally
converted to a CEDTD), and an associated write-access con-
trol policy (also expressed in XML). The implementation
includes a user interface that displays the inconsistencies
and proposes changes to the policy using InsDelRepair,
RepairNaive, and RepairSetCover. The user is then
able to select among the suggested changes, and ACCon will
apply the changes to the policy and check whether consis-
tency is achieved. If the policy is not consistent, the process
is repeated until no more inconsistencies are found.

6.1 Experimental setup

We evaluated the closure, consistency and repair algorithms
described earlier in the article in comparison with a generic
approach based on DLV. Specifically, we used DLV to check
the consistency of policies and to calculate exact minimal
repairs, when possible.

Our benchmark includes both real and synthetic (randomly-
generated) schemas. The real schemas are based on existing
schemas for IUPHAR-DB [14], SBML, XMark [27], and
Sigmod Record and DBLP bibliography data. IUPHAR-DB
is a database of pharmacological receptors maintained by
colleagues at the University of Edinburgh; our schema is de-
rived from an XML export format for their data. The SBML
(Systems Biology Markup Language) schema is based on
SBML level 1, version 2, obtained from the SBML.org web-
site1. The Sigmod Record and DBLP schemas are based on
the standard schemas for these sources, obtained from the
UW XML dataset collection 2.

To generate the synthetic DTDs, we used the DTD Gen-
erator3, a configurable Java program that takes into account
a number of different parameters for the production of DTDs
such as (a) the maximum depth of the DTD, (b) the number

1 http://www.sbml.org
2 http://www.cs.washington.edu/research/

xmldatasets/
3 DTD Generator: http://www.l3s.de/˜papapetrou/

dtdgen.html

of distinct labels in the DTD, (c) the expected number of
children per node (selected randomly by a Poisson distri-
bution), and (d) the probability of ’*’ per node. The DTDs
obtained from the generator were recursive, so we manu-
ally translated them into non-recursive ones. Schema nodes
were annotated with ’*’ with probability 0.05. We produced
DTDs with 10, 30, 50, 70, 100, 200 and 500 elements. For
the DTDs with less than 100 elements we fixed the DTD
depth to 4, the number of children of a node to 3, whereas
for the DTDs with more than 100 elements, we fixed the
number of children to 6 and the number of distinct children
per node to 10. We write RANDOM-10, . . . , RANDOM-500
for these schemas, where RANDOM-n refers to the random
schema with n elements.

For both real and synthetic schemas, we report on randomly-
generated policies. A random policy is generated by allow-
ing each possible UAT with probability p. For most experi-
ments, we considered policies generated with p = 0.5; we
also considered the effect of varying this probability on re-
pair size. For most measurements we used justification limit
J = 10. We also considered the effect of varying J.

All experiments were carried out on a MacBook Pro
with 2.8GHz Intel Core 2 Duo CPU with 4GB RAM. We
used a library called DLVWrapper to interface with the DLV
executable (both are available from DLVSystem S.R.L.).

6.2 Experimental results

6.2.1 Completion, consistency and repair time

The experimental results for partial policy closure, consis-
tency checking, and repair time are summarized in Figure 14.
We first show the closure time and consistency checking
times for our algorithms, then the DLV consistency checking
time, then the times for repairing based on ReplaceNaive,
ReplaceSetCover and using DLV. The time for insert–
delete repairs is added to both the naive and MSCP-based
repair times, to ensure a fair comparison with DLV, which
solves both repair problems at once. However, the time needed
for insert–delete repairs was negligible compared to that needed
for either naive or MSCP repairs (usually, it was less than a
millisecond). DLV timed out when we attempted to use it to
repair random policies of 100 elements or more. The times
reported for DLV include overhead for calling DLV as an ex-
ternal process from our Java implementation, as well as time
to construct the DLV program from the schema and policy.
The randomly-generated IUPHAR policies were all consis-
tent, so we do not report any repair times for them (in any
case, these policies can never have any replace inconsisten-
cies and, as noted above, insert–delete repair is fast).

Our implementations of both the policy closure and con-
sistency algorithms are faster than the generic approach used
by DLV by approximately an order of magnitude. Our naive

http://www.sbml.org
http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/
http://www.l3s.de/~papapetrou/dtdgen.html
http://www.l3s.de/~papapetrou/dtdgen.html

22

Fig. 13 GUI interface to ACCon

InsDel Naive SetCover DLV
IUPHAR 0 0 0 0
SigmodRecord 0.4 0 0 0
SBML 0 2.2 1.2 1.2
XMARK 2.8 0.8 0.8 0.8
DBLP 0 2.2 1.2 1.2

0

0.75

1.5

2.25

3

SigmodRecord SBML XMARK DBLP

Real schema repair sizes

InsDel
Naive
SetCover
DLV

Closure Consis DLV Consis Naive SetCover DLV Repair
IUPHAR
SigmodRecord
SBML
XMARK
DBLP

28606.4 12762.8 114187.2 0 0 0
7545.6 10357.8 82717.4 287 287 20428.6

28994.8 17331.4 137086.2 5915.2 8909.2 133184.8
34222.4 18754.2 150824.2 6193.2 10932.4 296412
42277.6 14906.6 310529.6 95973.2 866074.4 5211055.6

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

IUPHAR SigmodRecord SBML XMARK DBLP

Real schema analysis times

μs
ec

Closure Consis DLV Consis
Naive SetCover DLV Repair

Closure Consis DLV Consis Naive SetCover DLV Repair

10

30

50

70

100

200

500

9.2896 4.4586 103.6434 3.1764 10.0148 75.9586

13.0038 5.113 100.5354 5.0426 13.0994 84.08

16.5742 7.0046 152.0908 10.049 41.184 194.3716

16.6042 8.4062 137.899 7.4596 23.082 1601.6014

77.49 16.6622 510.4254 77.6754 2048.3006

47.5758 28.2896 382.2886 32.5854 873.3194

119.619 31.6606 2198.8994 145.536 16236.9184

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

10 30 50 70 100 200 500

Random schema analysis time
m

se
c

Closure Consis DLV Consis
Naive SetCover DLV Repair

InsDel Naive SetCover DLV

10 1.2 8 6 5.8

30 1.8 4.2 3.4 3.4

50 1 8.2 6.2 6

70 3.2 12 9.4 9.2

100 1.8 470 422

200 1.2 303.8 252.8

500 7.4 1525.4 1334.8

1

10

100

1000

10000

10 30 50 70 100 200 500

Random schema repair sizes

InsDel Naive
SetCover DLV

Fig. 14 Closure, consistency and repair times for real and random policies. Times are averaged over five random policies (p = 0.5). DLV repair did
not finish within 5 seconds for larger random schemas. The left-hand figure is in microseconds (µsec) while the right-hand figure is in milliseconds
(msec). Both are in logarithmic scale.

InsDel Naive SetCover DLV
IUPHAR 0 0 0 0
SigmodRecord 0.4 0 0 0
SBML 0 2.2 1.2 1.2
XMARK 2.8 0.8 0.8 0.8
DBLP 0 2.2 1.2 1.2

0

0.75

1.5

2.25

3

SigmodRecord SBML XMARK DBLP

Real schema repair sizes

InsDel
Naive
SetCover
DLV

Closure Consis DLV Consis Naive SetCover DLV Repair
IUPHAR
SigmodRecord
SBML
XMARK
DBLP

28606.4 12762.8 114187.2 0 0 0
7545.6 10357.8 82717.4 287 287 20428.6

28994.8 17331.4 137086.2 5915.2 8909.2 133184.8
34222.4 18754.2 150824.2 6193.2 10932.4 296412
42277.6 14906.6 310529.6 95973.2 866074.4 5211055.6

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

IUPHAR SigmodRecord SBML XMARK DBLP

Real schema analysis times

μs
ec

Closure Consis DLV Consis
Naive SetCover DLV Repair

Closure Consis DLV Consis Naive SetCover DLV Repair

10

30

50

70

100

200

500

9.2896 4.4586 103.6434 3.1764 10.0148 75.9586

13.0038 5.113 100.5354 5.0426 13.0994 84.08

16.5742 7.0046 152.0908 10.049 41.184 194.3716

16.6042 8.4062 137.899 7.4596 23.082 1601.6014

77.49 16.6622 510.4254 77.6754 2048.3006

47.5758 28.2896 382.2886 32.5854 873.3194

119.619 31.6606 2198.8994 145.536 16236.9184

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

10 30 50 70 100 200 500

Random schema analysis time

m
se

c

Closure Consis DLV Consis
Naive SetCover DLV Repair

InsDel Naive SetCover DLV

10 1.2 8 6 5.8

30 1.8 4.2 3.4 3.4

50 1 8.2 6.2 6

70 3.2 12 9.4 9.2

100 1.8 470 422

200 1.2 303.8 252.8

500 7.4 1525.4 1334.8

1

10

100

1000

10000

10 30 50 70 100 200 500

Random schema repair sizes

InsDel Naive
SetCover DLV

Fig. 15 Analysis time and repair sizes for random schemas. Repair sizes are averaged over five random policies (p = 0.5). Repair sizes for DLV
exclude insert–delete repairs. DLV repair did not finish within 5 seconds for larger random schemas.

repair algorithm is also always faster than the MSCP-based
algorithm, sometimes by more than an order of magnitude.
Likewise, MSCP-based repair is always faster than DLV, of-
ten by over an order of magnitude.

6.2.2 Repair size

We measured the sizes of insert–delete, naive replace, and
MSCP-based replace repairs found by the respective algo-
rithms. We also measured the sizes of minimal repairs found
by DLV, subject to a timeout of 60 seconds. The results are
summarized in Figure 15. Both figures report the number of
replace repairs found by DLV, since the number of insert–
delete repairs found by either DLV or our algorithms is the
same. Repair sizes are omitted for DLV on larger random
policies where DLV timed out.

For real schemas, the number of repairs needed for a ran-
dom policy was typically small: on average, less than three
insert–delete repairs and less than two replace repairs. For
all of the real schemas, the MSCP-based algorithm found a
minimal repair, as of course DLV did. The naive repair was
often significantly larger.

For random schemas, the number of insert–delete re-
pairs was typically small, even for larger policies: on av-
erage there were under 10 insert–delete repairs. However,
the number of replace repairs tends to grow as the size of
the policy increases. Again, the naive repair is often signif-
icantly larger than the minimal repair found by DLV (when
possible), and usually significantly larger than the MSCP-
based repair. The MSCP-based repair is often not minimal
but usually close to the minimal one found by DLV.

23

5 10 20 100

4.132 4.453 4.045 4.084
4.118 4.109 4.03 4.328
4.537 4.913 4.594 4.553
4.559 4.94 4.627 4.585
4.857 4.903 4.8 4.782
6.074 7.528 5.514 5.622
5.134 5.571 5.217 5.779
8.171 7.722 8.627 7.015
7.841 10.66 7.786 7.717
7.726 9.488 7.768 7.742
8.172 8.387 8.122 8.18
8.064 9.391 8.702 8.637
8.463 10.507 9.618 9.697
8.409 9.246 9.797 10.584
11.656 11.934 11.673 11.615
11.77 12.597 11.675 11.764
13.999 13.087 11.802 11.806
12.085 12.554 13.519 12.203
12.09 13.082 12.969 12.664
15.944 17.997 13.257 12.912
14.206 17.177 14.031 14.003
15.225 17.437 14.98 15.046
16.734 17.909 18.53 15.82
15.036 16.308 15.107 16.169
21.081 18.684 16.298 16.208
15.623 17.605 15.493 16.338
15.765 44.362 16.95 17.076
16.003 17.707 18.933 19.491
19.538 22.996 19.589 19.799
30.718 26.369 60.184 37.054
24.448 27.894 29.268 41.221
28.11 37.106 18.689 45.801
46.679 79.381 34.31 62.738
30.774 36.725 34.859 68.598
19.376 19.079 15.392 70.353
21.301 24.938 16.326 86.949
379.113 516.806 329.322 579.21
686.023 815.822 1270.805 18302.85
846.029 823.367 1261.282 23600.385
764.985 939.972 1380.941 25355.288
823.245 785.932 1285.353 29468.914
806.087 1000.627 1217.581 30366.847
2,044.428 2021.775 3051.44 65844.533
1989.49 2057.923 3552.831 66079.344
1674.785 1964.452 3410.709 69165.508
1989.386 2165.901 3475.879 70843.071
2077.983 2028.825 3448.664 77369.725
16231.585 17096.776 15049.29 128819.241
16163.318 16968.874 14882.499 133603.369
15861.709 16670.704 18144.14 134791.369
15964.658 12865.727 15051.165 139400.401
16479.51 17577.483 15699.669 142491.052

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

SetCover repair time for different justification limits

m
se

c

J = 5
J = 10
J = 20
J = 100

5 10 20 100 diff

1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
2 2 2 2 0
2 2 2 2 0
2 2 2 2 0
2 2 2 2 0
2 2 2 2 0
2 2 2 2 0
3 3 3 3 0
3 3 3 3 0
4 4 4 4 0
4 4 8 4 0
5 5 5 5 0
5 5 5 5 0
6 5 5 5 1
5 5 5 5 0
6 6 6 6 0
6 6 6 6 0
6 6 6 6 0
6 6 6 6 0
6 7 6 6 0
7 7 7 7 0
7 7 14 7 0
8 8 8 8 0
8 8 8 8 0
9 8 8 8 1

10 10 10 9 1
11 11 11 11 0
11 11 11 11 0

221 226 219 216 5
246 243 244 243 3
253 251 250 253 0
255 260 263 261 -6
283 284 288 288 -5
411 408 405 406 5
419 403 407 409 10
424 426 412 421 3
440 426 423 432 8
455 447 445 445 10

1328 1333 1322 1303 25
1317 1316 1301 1311 6
1345 1342 1331 1317 28
1353 1350 1343 1332 21
1373 1333 1350 1372 1

1E+00

1E+01

1E+02

1E+03

1E+04

SetCover repair size for different justification limits

J = 5
J = 10
J = 20
J = 100

1000000 5 10 20 100

4132000 4453000 4045000 4084000

4118000 4109000 4030000 4328000

4537000 4913000 4594000 4553000

4559000 4940000 4627000 4585000

4857000 4903000 4800000 4782000

6074000 7528000 5514000 5622000

5134000 5571000 5217000 5779000

8171000 7722000 8627000 7015000

7841000 10660000 7786000 7717000

7726000 9488000 7768000 7742000

8172000 8387000 8122000 8180000

8064000 9391000 8702000 8637000

8463000 10507000 9618000 9697000

8409000 9246000 9797000 10584000

11656000 11934000 11673000 11615000

11770000 12597000 11675000 11764000

13999000 13087000 11802000 11806000

12085000 12554000 13519000 12203000

12090000 13082000 12969000 12664000

15944000 17997000 13257000 12912000

14206000 17177000 14031000 14003000

15225000 17437000 14980000 15046000

16734000 17909000 18530000 15820000

15036000 16308000 15107000 16169000

21081000 18684000 16298000 16208000

15623000 17605000 15493000 16338000

15765000 44362000 16950000 17076000

16003000 17707000 18933000 19491000

19538000 22996000 19589000 19799000

30718000 26369000 60184000 37054000

24448000 27894000 29268000 41221000

28110000 37106000 18689000 45801000

46679000 79381000 34310000 62738000

30774000 36725000 34859000 68598000

19376000 19079000 15392000 70353000

21301000 24938000 16326000 86949000

379113000 516806000 329322000 579210000

686023000 815822000 1270805000 18302850000

846029000 823367000 1261282000 23600385000

764985000 939972000 1380941000 25355288000

823245000 785932000 1285353000 29468914000

806087000 1000627000 1217581000 30366847000

2,044,428,000 2021775000 3051440000 65844533000

1989490000 2057923000 3552831000 66079344000

1674785000 1964452000 3410709000 69165508000

1989386000 2165901000 3475879000 70843071000

2077983000 2028825000 3448664000 77369725000

16231585000 17096776000 15049290000 1.28819E+11

16163318000 16968874000 14882499000 1.33603E+11

15861709000 16670704000 18144140000 1.34791E+11

15964658000 12865727000 15051165000 1.394E+11

16479510000 17577483000 15699669000 1.42491E+11

5 10 20 100

4.132 4.453 4.045 4.084
4.118 4.109 4.03 4.328
4.537 4.913 4.594 4.553
4.559 4.94 4.627 4.585
4.857 4.903 4.8 4.782
6.074 7.528 5.514 5.622
5.134 5.571 5.217 5.779
8.171 7.722 8.627 7.015
7.841 10.66 7.786 7.717
7.726 9.488 7.768 7.742
8.172 8.387 8.122 8.18
8.064 9.391 8.702 8.637
8.463 10.507 9.618 9.697
8.409 9.246 9.797 10.584
11.656 11.934 11.673 11.615
11.77 12.597 11.675 11.764
13.999 13.087 11.802 11.806
12.085 12.554 13.519 12.203
12.09 13.082 12.969 12.664
15.944 17.997 13.257 12.912
14.206 17.177 14.031 14.003
15.225 17.437 14.98 15.046
16.734 17.909 18.53 15.82
15.036 16.308 15.107 16.169
21.081 18.684 16.298 16.208
15.623 17.605 15.493 16.338
15.765 44.362 16.95 17.076
16.003 17.707 18.933 19.491
19.538 22.996 19.589 19.799
30.718 26.369 60.184 37.054
24.448 27.894 29.268 41.221
28.11 37.106 18.689 45.801
46.679 79.381 34.31 62.738
30.774 36.725 34.859 68.598
19.376 19.079 15.392 70.353
21.301 24.938 16.326 86.949
379.113 516.806 329.322 579.21
686.023 815.822 1270.805 18302.85
846.029 823.367 1261.282 23600.385
764.985 939.972 1380.941 25355.288
823.245 785.932 1285.353 29468.914
806.087 1000.627 1217.581 30366.847
2,044.428 2021.775 3051.44 65844.533
1989.49 2057.923 3552.831 66079.344
1674.785 1964.452 3410.709 69165.508
1989.386 2165.901 3475.879 70843.071
2077.983 2028.825 3448.664 77369.725
16231.585 17096.776 15049.29 128819.241
16163.318 16968.874 14882.499 133603.369
15861.709 16670.704 18144.14 134791.369
15964.658 12865.727 15051.165 139400.401
16479.51 17577.483 15699.669 142491.052

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

SetCover repair time for different justification limits

m
se

c

J = 5
J = 10
J = 20
J = 100

5 10 20 100 diff

1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
2 2 2 2 0
2 2 2 2 0
2 2 2 2 0
2 2 2 2 0
2 2 2 2 0
2 2 2 2 0
3 3 3 3 0
3 3 3 3 0
4 4 4 4 0
4 4 8 4 0
5 5 5 5 0
5 5 5 5 0
6 5 5 5 1
5 5 5 5 0
6 6 6 6 0
6 6 6 6 0
6 6 6 6 0
6 6 6 6 0
6 7 6 6 0
7 7 7 7 0
7 7 14 7 0
8 8 8 8 0
8 8 8 8 0
9 8 8 8 1

10 10 10 9 1
11 11 11 11 0
11 11 11 11 0

221 226 219 216 5
246 243 244 243 3
253 251 250 253 0
255 260 263 261 -6
283 284 288 288 -5
411 408 405 406 5
419 403 407 409 10
424 426 412 421 3
440 426 423 432 8
455 447 445 445 10

1328 1333 1322 1303 25
1317 1316 1301 1311 6
1345 1342 1331 1317 28
1353 1350 1343 1332 21
1373 1333 1350 1372 1

1E+00

1E+01

1E+02

1E+03

1E+04

SetCover repair size for different justification limits

J = 5
J = 10
J = 20
J = 100

1000000 5 10 20 100

4132000 4453000 4045000 4084000

4118000 4109000 4030000 4328000

4537000 4913000 4594000 4553000

4559000 4940000 4627000 4585000

4857000 4903000 4800000 4782000

6074000 7528000 5514000 5622000

5134000 5571000 5217000 5779000

8171000 7722000 8627000 7015000

7841000 10660000 7786000 7717000

7726000 9488000 7768000 7742000

8172000 8387000 8122000 8180000

8064000 9391000 8702000 8637000

8463000 10507000 9618000 9697000

8409000 9246000 9797000 10584000

11656000 11934000 11673000 11615000

11770000 12597000 11675000 11764000

13999000 13087000 11802000 11806000

12085000 12554000 13519000 12203000

12090000 13082000 12969000 12664000

15944000 17997000 13257000 12912000

14206000 17177000 14031000 14003000

15225000 17437000 14980000 15046000

16734000 17909000 18530000 15820000

15036000 16308000 15107000 16169000

21081000 18684000 16298000 16208000

15623000 17605000 15493000 16338000

15765000 44362000 16950000 17076000

16003000 17707000 18933000 19491000

19538000 22996000 19589000 19799000

30718000 26369000 60184000 37054000

24448000 27894000 29268000 41221000

28110000 37106000 18689000 45801000

46679000 79381000 34310000 62738000

30774000 36725000 34859000 68598000

19376000 19079000 15392000 70353000

21301000 24938000 16326000 86949000

379113000 516806000 329322000 579210000

686023000 815822000 1270805000 18302850000

846029000 823367000 1261282000 23600385000

764985000 939972000 1380941000 25355288000

823245000 785932000 1285353000 29468914000

806087000 1000627000 1217581000 30366847000

2,044,428,000 2021775000 3051440000 65844533000

1989490000 2057923000 3552831000 66079344000

1674785000 1964452000 3410709000 69165508000

1989386000 2165901000 3475879000 70843071000

2077983000 2028825000 3448664000 77369725000

16231585000 17096776000 15049290000 1.28819E+11

16163318000 16968874000 14882499000 1.33603E+11

15861709000 16670704000 18144140000 1.34791E+11

15964658000 12865727000 15051165000 1.394E+11

16479510000 17577483000 15699669000 1.42491E+11

Fig. 16 Evaluation of the effect of justification limit. The figures report on 52 trials involving random and real policies with replace inconsistencies
and J ∈ {5, 10, 20, 100}. The trials are sorted by their time or repair size for J = 100.

0.01

0.25

0.50

0.75

0.99

RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a01-1.acp23606000 6565000 0 0 0 0 0 0 0 0 105514000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a01-2.acp26282000 6722000 0 0 0 0 0 0 0 0 108320000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a01-3.acp14477000 6796000 0 0 0 0 0 0 0 0 99933000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a01-4.acp14181000 8318000 0 0 0 0 0 0 0 0 102976000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a01-5.acp14434000 6591000 0 0 0 0 0 0 0 0 101253000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a25-1.acp13934000 6511000 0 0 5604000 17083000 40102000 4 2 2 106811000 23015000 63288000 2 2
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a25-2.acp14275000 6515000 0 0 5531000 16418000 15981000 2 2 2 102988000 22460000 60064000 2 2
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a25-3.acp13888000 6597000 0 0 6185000 17918000 15172000 3 3 3 106369000 21851000 60058000 3 3
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a25-4.acp13761000 6459000 707000 1 5589000 18565000 15037000 4 2 2 107184000 23658000 65064000 3 2
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a25-5.acp14927000 7284000 0 0 0 0 0 0 0 0 100150000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a50-1.acp13796000 6587000 0 0 5328000 33849000 14975000 6 5 6 120841000 23255000 83323000 5 5
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a50-2.acp13825000 6567000 728000 3 5144000 38667000 14725000 5 5 4 109807000 24234000 107884000 7 4
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a50-3.acp13758000 6483000 722000 3 4952000 66437000 23184000 8 6 4 110080000 37197000 122303000 7 4
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a50-4.acp14279000 6623000 705000 1 5333000 33144000 15111000 6 6 5 109250000 28189000 88032000 6 5
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a50-5.acp13903000 6571000 700000 1 5323000 31690000 14592000 5 4 4 116861000 22267000 98652000 5 4
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a75-1.acp14079000 6623000 0 0 3708000 85980000 35114000 11 7 7 109807000 18733000 122301000 7 7
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a75-2.acp14112000 6636000 698000 1 6198000 60169000 17926000 12 9 8 127877000 39557000 134335000 9 8
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a75-3.acp13993000 6526000 0 0 5603000 34721000 26577000 8 7 8 145225000 61922000 128568000 6 6
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a75-4.acp14153000 6602000 707000 2 4460000 83802000 14991000 8 10 6 106958000 33362000 157512000 8 6
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a75-5.acp14427000 6601000 716000 3 4435000 68237000 50170000 13 10 12 106329000 31727000 683878000 13 10
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a99-1.acp17420000 7566000 0 0 0 0 0 0 0 0 108094000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a99-2.acp17706000 7504000 0 0 0 0 0 0 0 0 98446000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a99-3.acp14123000 6982000 709000 2 6368000 16472000 41011000 9 6 13 111187000 64623000 301341000 8 6
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a99-4.acp13900000 7655000 716000 2 3483000 55737000 85337000 9 10 13 120030000 18871000 240635000 8 6
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a99-5.acp14217000 7167000 711000 2 3993000 43205000 42584000 4 4 7 104744000 19316000 896964000 6 4

0

3.75

7.5

11.25

15

Untitled 1 Untitled 3 Untitled 5 Untitled 7 Untitled 9 Untitled 11 Untitled 13 Untitled 15 Untitled 17 Untitled 19 Untitled 21 Untitled 4

Chart 1

Untitled 1 Untitled 2 Untitled 3 Untitled 6

Naive SetCover DLV

0.01 0 0 0

0.25 2.6 1.8 1.8

0.5 6 4.6 4.4

0.75 10.4 8.2 7.4

0.99 4.4 6.6 3.2

0.01

0.25

0.50

0.75

0.99

RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a01-1.acp45990000 18226000 0 0 15909000 9573177000 1.0094E+10 1 1 1 819935000 4.7532E+10 1135803000 1 1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a01-2.acp48103000 20562000 0 0 13292000 9584149000 1.0117E+10 3 3 3 820377000 4.7546E+10 1146563000 3 3
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a01-3.acp53424000 20493000 0 0 13820000 9599931000 1.0189E+10 5 5 5 813042000 4.7688E+10 1131337000 5 5
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a01-4.acp47621000 18321000 0 0 12749000 9595999000 1.0105E+10 2 2 2 787828000 4.7548E+10 1119526000 2 2
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a01-5.acp46366000 18316000 0 0 13300000 9718551000 1.0326E+10 6 5 5 795882000 4.8000E+10 1130352000 5 5
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a25-1.acp79959000 18872000 801000 2 52419000 4.7364E+10 1.4014E+10 695 628 561 2027447000 4.2178E+10 5700464000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a25-2.acp70655000 24135000 778000 1 48385000 4.7553E+10 1.4104E+10 682 577 521 1845243000 4.2500E+10 5678004000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a25-3.acp70018000 20161000 0 0 47222000 4.6686E+10 1.3675E+10 719 636 559 2217886000 4.1997E+10 5747946000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a25-4.acp71030000 21248000 0 0 48942000 4.0979E+10 1.3952E+10 669 597 536 2091065000 4.2269E+10 5700815000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a25-5.acp81841000 20349000 785000 1 46256000 4.7845E+10 1.4023E+10 712 616 576 2026072000 4.2221E+10 5700346000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a50-1.acp113129000 22411000 853000 7 129745000 8.0674E+10 1.6628E+10 1514 1444 1313 2119258000 3.8394E+10 5660360000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a50-2.acp99798000 21499000 919000 7 182290000 6.4380E+10 1.6541E+10 1548 1505 1324 2103298000 3.8326E+10 5648209000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a50-3.acp103137000 22789000 849000 8 133878000 6.6163E+10 1.7227E+10 1464 1420 1273 2087322000 3.8479E+10 5651251000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a50-4.acp105015000 23193000 883000 9 138748000 7.2091E+10 1.6416E+10 1539 1475 1313 2128669000 3.8340E+10 5650108000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a50-5.acp100467000 22966000 866000 5 146448000 5.4514E+10 1.2305E+10 1568 1485 1360 2104935000 3.8275E+10 5645731000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a75-1.acp90139000 26873000 1125000 17 263786000 6.7345E+10 1.1654E+10 2173 2184 1986 1983078000 3.6932E+10 5625565000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a75-2.acp99550000 23766000 924000 13 236340000 6.1608E+10 1.2116E+10 2122 2159 1949 2038805000 3.6858E+10 5622552000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a75-3.acp106462000 24889000 952000 16 248388000 8.3172E+10 1.2346E+10 2119 2087 1976 2026682000 3.6796E+10 5630156000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a75-4.acp93542000 26052000 990000 13 276179000 7.1792E+10 1.1903E+10 2093 2135 1933 2035140000 3.6825E+10 5622647000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a75-5.acp100486000 25611000 7485000 13 256098000 6.6696E+10 1.2050E+10 2151 2078 1908 2028219000 3.6611E+10 5622674000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a99-1.acp131839000 66394000 1110000 17 231706000 1.0292E+11 1.9065E+10 1135 1566 1394 1916510000 3.7342E+10 5650000000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a99-2.acp103858000 66655000 1168000 16 275458000 8.4295E+10 1.7044E+10 1236 1598 1483 1897452000 3.7456E+10 5591756000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a99-3.acp112345000 69076000 1227000 18 275048000 1.0441E+11 3.8041E+11 1228 1840 1482 1918847000 3.7464E+10 5594416000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a99-4.acp101223000 67560000 1253000 17 456088000 1.0457E+11 4.0619E+11 1223 1808 1570 1930783000 3.7173E+10 5586955000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a99-5.acp117029000 67432000 1167000 17 428137000 1.1726E+11 8.4983E+11 1237 1877 1422 1944552000 3.6955E+10 5601063000 -1

0

750

1500

2250

3000

Untitled 1 Untitled 3 Untitled 5 Untitled 7 Untitled 9 Untitled 11 Untitled 13 Untitled 15 Untitled 17 Untitled 19 Untitled 21 Untitled 4

Chart 1

Untitled 1 Untitled 2 Untitled 3 Untitled 6

Naive SetCover DLV

0.01 3.4 3.2 16

0.25 695.4 550.6 0

0.5 1526.6 1316.6 0

0.75 2131.6 1950.4 0

0.99 1211.8 1470.2 0

0

1000

2000

3000

0.01 0.25 0.5 0.75 0.99

Allow probability vs. repair size (RANDOM-500)

Naive
SetCover

0

5

10

15

0.01 0.25 0.5 0.75 0.99

Allow probability vs. repair size (RANDOM-50)

Naive
SetCover
DLV

0.01

0.25

0.50

0.75

0.99

RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a01-1.acp23606000 6565000 0 0 0 0 0 0 0 0 105514000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a01-2.acp26282000 6722000 0 0 0 0 0 0 0 0 108320000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a01-3.acp14477000 6796000 0 0 0 0 0 0 0 0 99933000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a01-4.acp14181000 8318000 0 0 0 0 0 0 0 0 102976000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a01-5.acp14434000 6591000 0 0 0 0 0 0 0 0 101253000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a25-1.acp13934000 6511000 0 0 5604000 17083000 40102000 4 2 2 106811000 23015000 63288000 2 2
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a25-2.acp14275000 6515000 0 0 5531000 16418000 15981000 2 2 2 102988000 22460000 60064000 2 2
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a25-3.acp13888000 6597000 0 0 6185000 17918000 15172000 3 3 3 106369000 21851000 60058000 3 3
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a25-4.acp13761000 6459000 707000 1 5589000 18565000 15037000 4 2 2 107184000 23658000 65064000 3 2
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a25-5.acp14927000 7284000 0 0 0 0 0 0 0 0 100150000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a50-1.acp13796000 6587000 0 0 5328000 33849000 14975000 6 5 6 120841000 23255000 83323000 5 5
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a50-2.acp13825000 6567000 728000 3 5144000 38667000 14725000 5 5 4 109807000 24234000 107884000 7 4
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a50-3.acp13758000 6483000 722000 3 4952000 66437000 23184000 8 6 4 110080000 37197000 122303000 7 4
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a50-4.acp14279000 6623000 705000 1 5333000 33144000 15111000 6 6 5 109250000 28189000 88032000 6 5
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a50-5.acp13903000 6571000 700000 1 5323000 31690000 14592000 5 4 4 116861000 22267000 98652000 5 4
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a75-1.acp14079000 6623000 0 0 3708000 85980000 35114000 11 7 7 109807000 18733000 122301000 7 7
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a75-2.acp14112000 6636000 698000 1 6198000 60169000 17926000 12 9 8 127877000 39557000 134335000 9 8
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a75-3.acp13993000 6526000 0 0 5603000 34721000 26577000 8 7 8 145225000 61922000 128568000 6 6
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a75-4.acp14153000 6602000 707000 2 4460000 83802000 14991000 8 10 6 106958000 33362000 157512000 8 6
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a75-5.acp14427000 6601000 716000 3 4435000 68237000 50170000 13 10 12 106329000 31727000 683878000 13 10
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a99-1.acp17420000 7566000 0 0 0 0 0 0 0 0 108094000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a99-2.acp17706000 7504000 0 0 0 0 0 0 0 0 98446000 0 0 0 0
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a99-3.acp14123000 6982000 709000 2 6368000 16472000 41011000 9 6 13 111187000 64623000 301341000 8 6
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a99-4.acp13900000 7655000 716000 2 3483000 55737000 85337000 9 10 13 120030000 18871000 240635000 8 6
RESULTS data/genDTD/gendtd.4.50.3.50.40.10.xsddata/genDTD/gendtd.4.50.3.50.40.10.a99-5.acp14217000 7167000 711000 2 3993000 43205000 42584000 4 4 7 104744000 19316000 896964000 6 4

0

3.75

7.5

11.25

15

Untitled 1 Untitled 3 Untitled 5 Untitled 7 Untitled 9 Untitled 11 Untitled 13 Untitled 15 Untitled 17 Untitled 19 Untitled 21 Untitled 4

Chart 1

Untitled 1 Untitled 2 Untitled 3 Untitled 6

Naive SetCover DLV

0.01 0 0 0

0.25 2.6 1.8 1.8

0.5 6 4.6 4.4

0.75 10.4 8.2 7.4

0.99 4.4 6.6 3.2

0.01

0.25

0.50

0.75

0.99

RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a01-1.acp45990000 18226000 0 0 15909000 9573177000 1.0094E+10 1 1 1 819935000 4.7532E+10 1135803000 1 1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a01-2.acp48103000 20562000 0 0 13292000 9584149000 1.0117E+10 3 3 3 820377000 4.7546E+10 1146563000 3 3
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a01-3.acp53424000 20493000 0 0 13820000 9599931000 1.0189E+10 5 5 5 813042000 4.7688E+10 1131337000 5 5
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a01-4.acp47621000 18321000 0 0 12749000 9595999000 1.0105E+10 2 2 2 787828000 4.7548E+10 1119526000 2 2
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a01-5.acp46366000 18316000 0 0 13300000 9718551000 1.0326E+10 6 5 5 795882000 4.8000E+10 1130352000 5 5
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a25-1.acp79959000 18872000 801000 2 52419000 4.7364E+10 1.4014E+10 695 628 561 2027447000 4.2178E+10 5700464000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a25-2.acp70655000 24135000 778000 1 48385000 4.7553E+10 1.4104E+10 682 577 521 1845243000 4.2500E+10 5678004000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a25-3.acp70018000 20161000 0 0 47222000 4.6686E+10 1.3675E+10 719 636 559 2217886000 4.1997E+10 5747946000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a25-4.acp71030000 21248000 0 0 48942000 4.0979E+10 1.3952E+10 669 597 536 2091065000 4.2269E+10 5700815000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a25-5.acp81841000 20349000 785000 1 46256000 4.7845E+10 1.4023E+10 712 616 576 2026072000 4.2221E+10 5700346000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a50-1.acp113129000 22411000 853000 7 129745000 8.0674E+10 1.6628E+10 1514 1444 1313 2119258000 3.8394E+10 5660360000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a50-2.acp99798000 21499000 919000 7 182290000 6.4380E+10 1.6541E+10 1548 1505 1324 2103298000 3.8326E+10 5648209000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a50-3.acp103137000 22789000 849000 8 133878000 6.6163E+10 1.7227E+10 1464 1420 1273 2087322000 3.8479E+10 5651251000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a50-4.acp105015000 23193000 883000 9 138748000 7.2091E+10 1.6416E+10 1539 1475 1313 2128669000 3.8340E+10 5650108000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a50-5.acp100467000 22966000 866000 5 146448000 5.4514E+10 1.2305E+10 1568 1485 1360 2104935000 3.8275E+10 5645731000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a75-1.acp90139000 26873000 1125000 17 263786000 6.7345E+10 1.1654E+10 2173 2184 1986 1983078000 3.6932E+10 5625565000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a75-2.acp99550000 23766000 924000 13 236340000 6.1608E+10 1.2116E+10 2122 2159 1949 2038805000 3.6858E+10 5622552000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a75-3.acp106462000 24889000 952000 16 248388000 8.3172E+10 1.2346E+10 2119 2087 1976 2026682000 3.6796E+10 5630156000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a75-4.acp93542000 26052000 990000 13 276179000 7.1792E+10 1.1903E+10 2093 2135 1933 2035140000 3.6825E+10 5622647000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a75-5.acp100486000 25611000 7485000 13 256098000 6.6696E+10 1.2050E+10 2151 2078 1908 2028219000 3.6611E+10 5622674000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a99-1.acp131839000 66394000 1110000 17 231706000 1.0292E+11 1.9065E+10 1135 1566 1394 1916510000 3.7342E+10 5650000000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a99-2.acp103858000 66655000 1168000 16 275458000 8.4295E+10 1.7044E+10 1236 1598 1483 1897452000 3.7456E+10 5591756000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a99-3.acp112345000 69076000 1227000 18 275048000 1.0441E+11 3.8041E+11 1228 1840 1482 1918847000 3.7464E+10 5594416000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a99-4.acp101223000 67560000 1253000 17 456088000 1.0457E+11 4.0619E+11 1223 1808 1570 1930783000 3.7173E+10 5586955000 -1
RESULTS data/genDTD/gendtd.6.500.10.50.40.10.xsddata/genDTD/gendtd.6.500.10.50.40.10.a99-5.acp117029000 67432000 1167000 17 428137000 1.1726E+11 8.4983E+11 1237 1877 1422 1944552000 3.6955E+10 5601063000 -1

0

750

1500

2250

3000

Untitled 1 Untitled 3 Untitled 5 Untitled 7 Untitled 9 Untitled 11 Untitled 13 Untitled 15 Untitled 17 Untitled 19 Untitled 21 Untitled 4

Chart 1

Untitled 1 Untitled 2 Untitled 3 Untitled 6

Naive SetCover DLV

0.01 3.4 3.2 16

0.25 695.4 550.6 0

0.5 1526.6 1316.6 0

0.75 2131.6 1950.4 0

0.99 1211.8 1470.2 0

0

1000

2000

3000

0.01 0.25 0.5 0.75 0.99

Allow probability vs. repair size (RANDOM-500)

Naive
SetCover

0

5

10

15

0.01 0.25 0.5 0.75 0.99

Allow probability vs. repair size (RANDOM-50)

Naive
SetCover
DLV

Fig. 17 Variation in repair sizes relative to probability p of allowing each UAT. Figures are averaged over five random policies (p ∈
{0.01, 0.25, 0.5, 0.75, 0.99}. Note that policies with all privileges allowed or denied are trivially consistent.

6.2.3 Varying justification limit

Recall that the ReplaceSetCover algorithm has a param-
eter J limiting the number of justifications to consider per
edge. The above experiments used a justification limit J =

10. To evaluate the sensitivity of the algorithm to this justi-
fication limit, we measured the repair times and policy sizes
for 52 trials involving random policies for J ∈ {5, 10, 20, 50}.
We obtained these trials by discarding those policies reported
above that had no replace inconsistencies. Figure 16 shows
the repair times and repair sizes for the different justification
limits. These are sorted by the time or size for the largest
justification limit J = 100; thus, large deviations from the
performance for J = 100 are readily visible. Both plots use
a logarithmic scale, so only large variations are visible.

These results suggest that increasing J only has an effect
for large policies, and this effect is to increase running time
significantly, while decreasing repair size modestly. Thus, a
choice of J = 10 or smaller is reasonable.

6.2.4 Varying allow probability

Our final experimental results concern the relationship be-
tween the probability p used to generate random policies and
the degree of inconsistency of a policy. The relationship be-
tween p and the minimal repair size is hard to predict, since
a policy must include both allowed and forbidden UATs in
order to be inconsistent. We experimentally evaluated the
repair sizes found by naive, MSCP, and DLV-based repair
algorithms. The results are summarized in Figure 17.

We observe a peak in the number of inconsistencies for
p = 0.75. For RANDOM-50, we can calculate the mini-
mal repair exactly using DLV and it follows this pattern. For
RANDOM-500, DLV times out, but the same pattern holds
for the approximate algorithms. Interestingly, both sets of
results also show that for policies with few forbidden UATs
(p = 0.99), the naive repair is often smaller than the MSCP-
based repair. This suggests that for policies with few forbid-
den UATs, it the naive algorithm may be better.

6.3 Discussion

Our experiments show that consistency checking, partial pol-
icy completion and policy repair can be implemented effi-
ciently, compared to a generic implementation using an ex-
ternal solver such as DLV. Our algorithms often return min-
imal repairs for small examples, while providing answers
much faster than the generic DLV solver on larger exam-
ples. Our algorithms also run fast enough to be useful in an
interactive policy editor for realistic schemas and policies.

Our experiments varying J show that a small value of
J is reasonable since increasing the justification limit slows
down repair for larger policies while not finding significantly
smaller repairs. Our experiments varying p (the probability
show that repair size peaks near p = 0.75), and suggest that
the naive repair strategy is preferable for policies in which
most operations are already allowed, since it is much faster
and produces a smaller repair for p = 0.99.

For many applications, the relative ease of implemen-
tation using DLV (or any other Datalog implementation)

24

would be a substantial advantage, but to repair larger poli-
cies, our algorithms offer superior performance.

7 Related Work

De Capitani di Vimercati et al. [10] give an overview of
access control techniques for XML, focusing on enforce-
ment mechanisms. Consistency of XML update access con-
trol policies was first considered by Fundulaki and Maneth [13],
who showed the problem is undecidable for policies defined
using XPath path expressions in the absence of a schema.
They introduced the schema-based policy model XAcUannot
which we have extended in this article.

Cautis, Abiteboul and Milo in [7] discuss XML update
constraints to restrict insert and delete updates, and propose
to detect updates that violate these constraints by measuring
the size of the modification of the database. This approach
differs from our security framework for two reasons: a) we
consider in addition to insert/delete also replace operations
and b) we require that each operation in the sequence of up-
dates does not violate the security constraints, whereas in
their case, they require that only the input and output data-
base satisfies them.

Minimal repairs are used in the problem of returning
consistent answers from inconsistent databases [1]. There,
a consistent answer is defined in terms of all the minimal
repairs of a database. In [2] the set cover problem was used
to find repairs of databases w.r.t. denial constraints.

Moore [22] studies the problem of whether an XML doc-
ument can be generated by a sequence of operations allowed
by an access control policy. He shows that this problem is
undecidable in general, and identifies some decidable spe-
cial cases (such as monotonically increasing updates).

Jacquemard and Rusinowitch [15] model XML updates
using rewriting rules and apply techniques from tree au-
tomata to prove decidability and (mostly) undecidability re-
sults for policy consistency in the absence of a schema. They
give a PTIME algorithm for consistency with respect to a
schema, similar to Theorem 1, but do not investigate partial
policies or the repair problem. They also show that consis-
tency is undecidable if the allowed sequence can temporarily
violate the schema. They do not consider the repair problem,
which is likely more difficult in the absence of a schema that
constrains the search space of policy changes.

Boneva et al. [4] study the problem of safely propagat-
ing updates to XML security views back to uniform, side-
effect free updates to the original source document. This
technique is complementary to our approach. Their tech-
nique assumes that the user is allowed to update any data
in the view, but may constrain the updates that can be per-
formed on the source. Our update access control policies can
be used to make some parts of the view read-only, and our

algorithms can then check that the view policy is consis-
tent. It may be interesting to study the problem of translating
policies expressed on the view to policies on the underlying
source data (or vice versa) or checking that allowed view
updates translate to allowed souce updates.

8 Conclusion

Access control policies attempt to constrain the actual oper-
ations users can perform, but are usually enforced in terms
of syntactic representations of the operations. Thus, policies
controlling update access to XML data may forbid certain
operations but permit other operations that have the same
effect. In this article we have studied such inconsistency
vulnerabilities and shown how to check consistency and re-
pair inconsistent policies. We also considered consistency
and repair problems for partial policies that are more conve-
nient to write since many privileges may be left unspecified.
We showed that the repair problem is intractable, but de-
veloped approximate algorithms and showed that they yield
reasonable results in practice. Finally, we evaluated the al-
gorithms and showed that the consistency and insert/delete
repair algorithms are fast in practice, while the approximate
replace repair algorithms are more computationally inten-
sive but still much faster than finding exact solutions using
a state-of-the-art answer-set programming solver.

There are a number of possible directions for future work,
including studying consistency for more general security poli-
cies specified using XPath expressions or constraints, inves-
tigating the complexity of and algorithms for other classes
of repairs, and developing consistent policy languages based
on larger classes of DTDs or schemas.

Acknowledgments: We would like to thank Sebastian Maneth
and Floris Geerts for insightful discussions and comments.
We also thank Francesco Ricca (University of Calabria) for
help with the DLVWrapper library. Loreto Bravo acknowl-
edges support from FONDECYT through grant 11080260
and CONICYT through grant PSD-57. Cheney is supported
by a Royal Society University Research Fellowship and this
work was supported in part by the UK Engineering and Phys-
ical Sciences Research Council and a Google Research Award.

References

1. Arenas M, Bertossi L, Chomicki J (1999) Consistent
Query Answers in Inconsistent Databases. In: PODS,
ACM Press, pp 68–79

2. Bertossi L, Bravo L, Franconi E, Lopatenko A (2008)
The complexity and approximation of fixing numerical
attributes in databases under integrity constraints. Inf
Syst 33:407–434

25

3. Bex GJ, Neven F, Schwentick T, Vansummeren S
(2010) Inference of concise regular expressions and
DTDs. ACM Trans Database Syst 35:11:1–11:47

4. Boneva I, Caron AC, Groz B, Roos Y, Tison S, Sta-
worko S (2011) View update translation for XML. In:
ICDT, pp 42–53

5. Bravo L, Cheney J, Fundulaki I (2007) Repairing incon-
sistent XML write-access control policies. In: DBPL,
Springer-Verlag, Vienna, Austria, no. 4797 in LNCS, pp
98–112

6. Bravo L, Cheney J, Fundulaki I (2008) ACCOn: Check-
ing consistency of XML write-access control policies.
In: Proceedings of the 11th International Conference
on Extending Database Technology (EDBT 2008), pp
715–719, demonstration.

7. Cautis B, Abiteboul S, Milo T (2009) Reasoning about
xml update constraints. J Comput Syst Sci 75(6):336–
358

8. Chvatal V (1979) A Greedy Heuristic for the Set Cov-
ering Problem. Mathematics of Operations Research
4:233–235

9. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001)
Introduction to Algorithms. MIT Press and McGraw-
Hill

10. De Capitani di Vimercati S, Foresti S, Paraboschi S,
Samarati P (2008) Access control models for XML. In:
Gertz M, Jajodia S (eds) Handbook of Database Secu-
rity, Springer US, pp 27–53

11. Fan W, Chan CY, Garofalakis M (2004) Secure XML
Querying with Security Views. In: ACM SIGMOD, pp
587–598

12. Floyd R (1962) Algorithm 97: Shortest path. Commu-
nications of the ACM 5(6):345

13. Fundulaki I, Maneth S (2007) Formalizing XML ac-
cess control for update operations. In: Proceedings of
the 12th ACM symposium on Access control models
and technologies, ACM, New York, NY, USA, SAC-
MAT ’07, pp 169–174

14. Harmar A, Hills R, Rosser E, Jones M, Buneman
O, Dunbar D, Greenhill S, Hale V, Sharman J, et al
TB (2009) IUPHAR-DB: the IUPHAR database of G
protein-coupled receptors and ion channels. Nucleic
Acids Res 37:D680–5

15. Jacquemard F, Rusinowitch M (2010) Rewrite-based
verification of XML updates. In: PPDP ’10: Proceed-
ings of the 12th international ACM SIGPLAN sympo-
sium on Principles and practice of declarative program-
ming, ACM, New York, NY, USA, pp 119–130

16. Jiang M, Fu AWC (2005) Integration and efficient
lookup of compressed XML accessibility maps. IEEE
TKDE 17(7):939–953

17. Koromilas L, Chinis G, Fundulaki I, Ioannidis S (2009)
Controlling access to XML documents over XML na-

tive and relational databases. In: Jonker W, Petkovic
M (eds) Secure Data Management, Springer, Lecture
Notes in Computer Science, vol 5776, pp 122–141

18. Kuper G, Massacci F, Rassadko N (2005) Generalized
XML security views. In: Proceedings of the tenth ACM
symposium on Access control models and technologies,
ACM, New York, NY, USA, SACMAT ’05, pp 77–84

19. Leone N, Pfeifer G, Faber W, Eiter T, Gottlob G, Koch
C, Mateis C, Perri S, Scarcello F (2006) The DLV
System for Knowledge Representation and Reasoning.
ACM Trans on Comp Logic 7(3):499–562

20. Lim CH, Park S, Son SH (2003) Access control of XML
documents considering update operations. In: ACM
Workshop on XML Security, pp 49–59

21. Martens W, Neven F, Schwentick T, Bex GJ (2006) Ex-
pressiveness and Complexity of XML Schema. ACM
Trans Database Syst 31(3):770–813

22. Moore N (2011) Computational complexity of the prob-
lem of tree generation under fine-grained access control
policies. Inf Comput 209(3):548–567

23. Murata M, Tozawa A, Kudo M, Hada S (2006) XML
Access Control Using Static Analysis. ACM TISSEC
9(3):290–331

24. Papadimitriou C (1994) Computational Complexity.
Addison-Wesley

25. Robie J, Chamberlin D, Dyck M, Florescu D, Melton
J, Simeon J (2011) XQuery Update Facility 1.0.
http://www.w3.org/TR/xquery-update-10/, W3C Rec-
ommendation

26. Saltzer J, Schroeder M (1975) The protection of infor-
mation in computer systems. Proceedings of the IEEE
63(9):1278–1308

27. Schmidt A, Waas F, Kersten M, Carey MJ, Manolescu
I, Busse R (2002) XMark: a benchmark for XML data
management. In: VLDB, pp 974–985

28. Stoica A, Farkas C (2002) Secure XML Views. In: IFIP
WG 11.3, Kluwer, vol 256

29. Yannakakis M (1978) Node-and Edge-deletion NP-
complete Problems. In: STOC, ACM Press, pp 253–264

30. Yannakakis M (1981) Edge-Deletion Problems. SIAM
Journal on Computing 10(2):297–309

31. Yu T, Srivastava D, Lakshmanan LVS, Jagadish HV
(2004) A Compressed Accessibility Map for XML.
ACM Trans Database Syst 29(2):363–402

	Introduction
	Background
	XML Access Control Framework
	Consistency
	Policy Repairs for SEDTDs
	Implementation and Experimental Evaluation
	Related Work
	Conclusion

