155 research outputs found

    Survey of wound-induced ethylene production by excised root segments

    Full text link
    Ethylene production was measured from excised 10-mm apical and subapical root segments from 50 cultivars in 19 species of 7 families. Monocotyledonous species tended to have much lower rates of ethylene production than dicotyledonous species. Ethylene production was generally higher in apical root segments than in subapical segments within 1 h of wounding. However, cultivars of Cucumis melo, C. sativus, Helianthus annuus, Hibiscus esculentus, and Zea mays had higher rates of ethylene production from subapical segments. In apical root segments, Phaseolus aureus cv. Berken had the highest ethylene production rate (76.7 etal g(-1) h(-1)), while Zea mays cv. Silver Queen had the lowest rate (0.6 etal g(-1) h(-1)). In subapical root segments, Cucumis sativus cv. Armenian had the highest rate (55.7 etal g(-1) h(-1)), while Zea mays cv. Silver Queen again had the lowest rate (0.6 etal g(-1) h(-1)). The many different responses in magnitude and kinetics of wound-induced ethylene production among the species, cultivars and tissues should provide interesting and useful systems with which to study wound responses and induced ethylene production

    Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance

    Get PDF
    Background : Tomato fruit ripening is controlled by ethylene and is characterized by a shift in color from green to red, a strong accumulation of lycopene, and a decrease in β-xanthophylls and chlorophylls. The role of other hormones, such as auxin, has been less studied. Auxin is retarding the fruit ripening. In tomato, there is no study of the carotenoid content and related transcript after treatment with auxin. Results : We followed the effects of application of various hormone-like substances to “Mature-Green” fruits. Application of an ethylene precursor (ACC) or of an auxin antagonist (PCIB) to tomato fruits accelerated the color shift, the accumulation of lycopene, α-, β-, and δ-carotenes and the disappearance of β-xanthophylls and chlorophyll b. By contrast, application of auxin (IAA) delayed the color shift, the lycopene accumulation and the decrease of chlorophyll a. Combined application of IAA + ACC led to an intermediate phenotype. The levels of transcripts coding for carotenoid biosynthesis enzymes, for the ripening regulator Rin, for chlorophyllase, and the levels of ethylene and abscisic acid (ABA) were monitored in the treated fruits. Correlation network analyses suggest that ABA, may also be a key regulator of several responses to auxin and ethylene treatments. Conclusions : The results suggest that IAA retards tomato ripening by affecting a set of (i) key regulators, such as Rin, ethylene and ABA, and (ii) key effectors, such as genes for lycopene and β-xanthophyll biosynthesis and for chlorophyll degradation
    • …
    corecore