45 research outputs found

    Fibre-Specific Responses to Endurance and Low Volume High Intensity Interval Training: Striking Similarities in Acute and Chronic Adaptation

    Get PDF
    The current study involved the completion of two distinct experiments. Experiment 1 compared fibre specific and whole muscle responses to acute bouts of either low-volume high-intensity interval training (LV-HIT) or moderate-intensity continuous endurance exercise (END) in a randomized crossover design. Experiment 2 examined the impact of a six-week training intervention (END or LV-HIT; 4 days/week), on whole body and skeletal muscle fibre specific markers of aerobic and anaerobic capacity. Six recreationally active men (Age: 20.7±3.8 yrs; VO2peak: 51.9±5.1 mL/kg/min) reported to the lab on two separate occasions for experiment 1. Following a muscle biopsy taken in a fasted state, participants completed an acute bout of each exercise protocol (LV-HIT: 8, 20-second intervals at ∼170% of VO2peak separated by 10 seconds of rest; END: 30 minutes at ∼65% of VO2peak), immediately followed by a muscle biopsy. Glycogen content of type I and IIA fibres was significantly (p<0.05) reduced, while p-ACC was significantly increased (p<0.05) following both protocols. Nineteen recreationally active males (n = 16) and females (n = 3) were VO2peak-matched and assigned to either the LV-HIT (n = 10; 21±2 yrs) or END (n = 9; 20.7±3.8 yrs) group for experiment 2. After 6 weeks, both training protocols induced comparable increases in aerobic capacity (END: Pre: 48.3±6.0, Mid: 51.8±6.0, Post: 55.0±6.3 mL/kg/min LV-HIT: Pre: 47.9±8.1, Mid: 50.4±7.4, Post: 54.7±7.6 mL/kg/min), fibre-type specific oxidative and glycolytic capacity, glycogen and IMTG stores, and whole-muscle capillary density. Interestingly, only LV-HIT induced greater improvements in anaerobic performance and estimated whole-muscle glycolytic capacity. These results suggest that 30 minutes of END exercise at ∼65% VO2peak or 4 minutes of LV-HIT at ∼170% VO2peak induce comparable changes in the intra-myocellular environment (glycogen content and signaling activation); correspondingly, training-induced adaptations resulting for these protocols, and other HIT and END protocols are strikingly similar

    Specific intensity for peaking: Is race pace the best option?

    Get PDF
    Background: The peaking period for endurance competition is characterized for a relative increase of the intensity of training, after a longer period of training relatively dominated by lower intensity and higher volume Objectives: The present study was designed to compare physiological and 10 km performance effects of high intensity training (HIT) versus race pace interval training (RP) during peaking for competition in well-trained runners. Patients and Methods: 13 athletes took part in the study, they were divided into two groups: HIT and RP. HIT performed short intervals at ~105% of the maximal aerobic velocity (MAV), while RP trained longer intervals at a speed of ~90% of the MAV (a speed approximating 10 km race pace). After 12 weeks of baseline training, the athletes trained for 6 weeks under one of the two peaking regimes. Subjects performed 10 km prior to and after the intervention period. The total load of training was matched between groups during the treatment phase. Subjects completed a graded treadmill running test until volitional exhaustion prior to each 10 km race. MAV was determined as the minimal velocity eliciting maximal oxygen consumption (VO2max). Results: Both groups significantly improved their 10 km time (35 minutes 29 seconds ± 1 minutes 41 seconds vs 34 minutes 53 seconds ± 1 minutes 55 seconds, P < 0.01 for HIT; 35 minutes 27 seconds ± 1 minutes 40 seconds vs 34 minutes 53 seconds ± 1 minutes 18 seconds P < 0.01 for RP). VO2max increased after HIT (69 ± 3.6 vs 71.5 ± 4.2 ml.Kg-1.min-1, P < 0.05); while it didn’t for RP (68.4 ± 6 vs 69.8 ± 3 ml.Kg-1.min-1, p>0.05). In contrast, running economy decreased significantly after HIT (210 ± 6 ml.Kg-1.km-1 vs 218 ± 9, P < 0.05). Conclusions: A 6 week period of training at either 105% of MAV or 90% of MAV yielded similar performance gains in a 10km race performed at ~90% MAV. Therefore, the physiological impact of HIT training seems to be positive for VO2max but negative for running economySin financiación0.482 SJR (2015) Q2, 110/225 Orthopedics and sports medicine; Q3, 77/128 Sport scienceUE
    corecore