337 research outputs found

    Nawal el-Saadawi, Searching

    Get PDF

    The averaged tensors of the relative energy-momentum and angular momentum in general relativity and some their applications

    Full text link
    There exist at least a few different kind of averaging of the differences of the energy-momentum and angular momentum in normal coordinates {\bf NC(P)} which give tensorial quantities. The obtained averaged quantities are equivalent mathematically because they differ only by constant scalar dimensional factors. One of these averaging was used in our papers [1-8] giving the {\it canonical superenergy and angular supermomentum tensors}. In this paper we present another averaging of the differences of the energy-momentum and angular momentum which gives tensorial quantities with proper dimensions of the energy-momentum and angular momentum densities. But these averaged relative energy-momentum and angular momentum tensors, closely related to the canonical superenergy and angular supermomentum tensors, {\it depend on some fundamental length L>0L>0}. The averaged relative energy-momentum and angular momentum tensors of the gravitational field obtained in the paper can be applied, like the canonical superenergy and angular supermomentum tensors, to {\it coordinate independent} analysis (local and in special cases also global) of this field. We have applied the averaged relative energy-momentum tensors to analyze vacuum gravitational energy and momentum and to analyze energy and momentum of the Friedman (and also more general) universes. The obtained results are very interesting, e.g., the averaged relative energy density is {\it positive definite} for the all Friedman universes.Comment: 30 pages, minor changes referring to Kasner universe

    Deep Projective 3D Semantic Segmentation

    Full text link
    Semantic segmentation of 3D point clouds is a challenging problem with numerous real-world applications. While deep learning has revolutionized the field of image semantic segmentation, its impact on point cloud data has been limited so far. Recent attempts, based on 3D deep learning approaches (3D-CNNs), have achieved below-expected results. Such methods require voxelizations of the underlying point cloud data, leading to decreased spatial resolution and increased memory consumption. Additionally, 3D-CNNs greatly suffer from the limited availability of annotated datasets. In this paper, we propose an alternative framework that avoids the limitations of 3D-CNNs. Instead of directly solving the problem in 3D, we first project the point cloud onto a set of synthetic 2D-images. These images are then used as input to a 2D-CNN, designed for semantic segmentation. Finally, the obtained prediction scores are re-projected to the point cloud to obtain the segmentation results. We further investigate the impact of multiple modalities, such as color, depth and surface normals, in a multi-stream network architecture. Experiments are performed on the recent Semantic3D dataset. Our approach sets a new state-of-the-art by achieving a relative gain of 7.9 %, compared to the previous best approach.Comment: Submitted to CAIP 201

    Bergmann-Thomson energy-momentum complex for solutions more general than the Kerr-Schild class

    Get PDF
    In a very well-known paper, Virbhadra's research group proved that the Weinberg, Papapetrou, Landau and Lifshitz, and Einstein energy-momentum complexes ``coincide'' for all metrics of Kerr-Schild class. A few years later, Virbhadra clarified that this ``coincidence'' in fact holds for metrics more general than the Kerr-Schild class. In the present paper, this study is extended for the Bergmann-Thomson complex and it is proved that this complex also ``coincides'' with those complexes for a more general than the Kerr-Schild class metric.Comment: RevTex, 12 page

    Teleparallel Energy-Momentum Distribution of Spatially Homogeneous Rotating Spacetimes

    Full text link
    The energy-momentum distribution of spatially homogeneous rotating spacetimes in the context of teleparallel theory of gravity is investigated. For this purpose, we use the teleparallel version of Moller prescription. It is found that the components of energy-momentum density are finite and well-defined but are different from General Relativity. However, the energy-momentum density components become the same in both theories under certain assumptions. We also analyse these quantities for some special solutions of the spatially homogeneous rotating spacetimes.Comment: 12 pages, accepted for publication in Int. J. Theor. Phy

    Energy and Momentum Distributions of Kantowski and Sachs Space-time

    Full text link
    We use the Einstein, Bergmann-Thomson, Landau-Lifshitz and Papapetrou energy-momentum complexes to calculate the energy and momentum distributions of Kantowski and Sachs space-time. We show that the Einstein and Bergmann-Thomson definitions furnish a consistent result for the energy distribution, but the definition of Landau-Lifshitz do not agree with them. We show that a signature switch should affect about everything including energy distribution in the case of Einstein and Papapetrou prescriptions but not in Bergmann-Thomson and Landau-Lifshitz prescriptions.Comment: 12 page

    Teleparallel Energy-Momentum Distribution of Static Axially Symmetric Spacetimes

    Full text link
    This paper is devoted to discuss the energy-momentum for static axially symmetric spacetimes in the framework of teleparallel theory of gravity. For this purpose, we use the teleparallel versions of Einstein, Landau-Lifshitz, Bergmann and Mo¨\ddot{o}ller prescriptions. A comparison of the results shows that the energy density is different but the momentum turns out to be constant in each prescription. This is exactly similar to the results available in literature using the framework of General Relativity. It is mentioned here that Mo¨\ddot{o}ller energy-momentum distribution is independent of the coupling constant λ\lambda. Finally, we calculate energy-momentum distribution for the Curzon metric, a special case of the above mentioned spacetime.Comment: 14 pages, accepted for publication in Mod. Phys. Lett.
    corecore