769 research outputs found

    Multifunctional roles of the autoimmune disease-associated tyrosine phosphatase PTPN22 inregulating T cell homeostasis

    Get PDF
    The non-receptor tyrosine phosphatase PTPN22 has a vital function in inhibiting antigen-receptor signaling in T cells, while polymorphisms in the PTPN22 gene are important risk alleles in human autoimmune diseases. We recently reported that a key physiological function of PTPN22 was to prevent naïve T cell activation and effector cell responses in response to low affinity antigens. PTPN22 also has a more general role in limiting T cell receptor-induced proliferation. Here we present new data emphasizing this dual function for PTPN22 in T cells. Furthermore, we show that T cell activation modulates the expression of PTPN22 and additional inhibitory phosphatases. We discuss the implication of these findings for our understanding of the roles of PTPN22 in regulating T cell responses and in autoimmunity

    Regulation of T cell activation and metabolism by Transforming Growth Factor-Beta

    Get PDF
    Transforming growth factor beta (TGFβ) receptor signalling regulates T cell development, differentiation and effector function. Expression of the immune-associated isoform of this cytokine, TGFβ1, is absolutely required for the maintenance of immunological tolerance in both mice and humans, whilst context-dependent TGFβ1 signalling regulates the differentiation of both anti- and pro-inflammatory T cell effector populations. Thus, distinct TGFβ-dependent T cell responses are implicated in the suppression or initiation of inflammatory and autoimmune diseases. In cancer settings, TGFβ signals contribute to the blockade of anti-tumour immune responses and disease progression. Given the key functions of TGFβ in the regulation of immune responses and the potential for therapeutic targeting of TGFβ-dependent pathways, the mechanisms underpinning these pleiotropic effects have been the subject of much investigation. This review focuses on accumulating evidence suggesting that modulation of T cell metabolism represents a major mechanism by which TGFβ influences T cell immunity

    The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses

    Get PDF
    SummaryThe molecular mechanisms whereby the CD45 tyrosine phosphatase (PTPase) regulates T cell receptor (TCR) signaling responses remain to be elucidated. To investigate this question, we have reconstituted CD45 (encoded by Ptprc)-deficient mice, which display severe defects in thymic development, with five different expression levels of transgenic CD45RO, or with mutant PTPase null or PTPase-low CD45R0. Whereas CD45 PTPase activity was absolutely required for the reconstitution of thymic development, only 3% of wild-type CD45 activity restored T cell numbers and normal cytotoxic T cell responses. Lowering the CD45 expression increased CD4 lineage commitment. Peripheral T cells with very low activity of CD45 phosphatase displayed reduced TCR signaling, whereas intermediate activity caused hyperactivation of CD4+ and CD8+ T cells. These results are explained by a rheostat mechanism whereby CD45 differentially regulates the negatively acting pTyr-505 and positively acting pTyr-394 p56lck tyrosine kinase phosphorylation sites. We propose that high wild-type CD45 expression is necessary to dephosphorylate p56lck pTyr-394, suppressing CD4 T+ cell lineage commitment and hyperactivity

    The bacterial Type III toxin-antitoxin system, ToxIN, is a dynamic protein-RNA complex with stability-dependent antiviral abortive infection activity.

    Get PDF
    Bacteria have evolved numerous defense systems to protect themselves from viral (bacteriophage) infection. The ToxIN system of Pectobacterium atrosepticum is a Type III toxin-antitoxin complex and "altruistic suicide" anti-phage system, which kills phage-infected cells through the release of a ribonuclease toxin, ToxN. ToxN is counteracted by a co-transcribed antitoxic RNA pseudoknot, ToxI, which self-assembles with ToxN into an inactive 3 ToxI:3 ToxN complex in vitro. However it is not known whether this complex is predominant in vivo, or how the complex is disassembled following infection to trigger a lethal, "altruistic" response. In this study, we characterise ToxI turnover and folding, and explore the link between complex stability and anti-phage activity, with a view to understanding events that lead to ToxN-mediated suicide following phage infection. We present evidence that ToxN constantly cleaves fresh ToxI in vivo rather than staying associated with pre-processed antitoxin, and that the ToxI antitoxin can partially fold spontaneously using conserved nucleotides. We also show that reducing the stability of the ToxIN complex can increase the strength of the antiviral response in a phage-dependent manner. Based on this information, we propose a revised model for ToxN inhibition, complex assembly and activation by infecting bacteriophage

    The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary metabolism in <it>Serratia </it>sp. ATCC 39006 (<it>Serratia </it>39006) is controlled via a complex network of regulators, including a LuxIR-type (SmaIR) quorum sensing (QS) system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in <it>Serratia </it>39006.</p> <p>Results</p> <p>We demonstrate that a mutation in the high affinity phosphate transporter <it>pstSCAB-phoU</it>, believed to mimic low phosphate conditions, causes upregulation of secondary metabolism and QS in <it>Serratia </it>39006, via the PhoBR two-component system. Phosphate limitation also activated secondary metabolism and QS in <it>Serratia </it>39006. In addition, a <it>pstS </it>mutation resulted in upregulation of <it>rap</it>. Rap, a putative SlyA/MarR-family transcriptional regulator, shares similarity with the global regulator RovA (regulator of virulence) from <it>Yersina </it>spp. and is an activator of secondary metabolism in <it>Serratia </it>39006. We demonstrate that expression of <it>rap</it>, <it>pigA-O </it>(encoding the prodigiosin biosynthetic operon) and <it>smaI </it>are controlled via PhoBR in <it>Serratia </it>39006.</p> <p>Conclusion</p> <p>Phosphate limitation regulates secondary metabolism in <it>Serratia </it>39006 via multiple inter-linked pathways, incorporating transcriptional control mediated by three important global regulators, PhoB, SmaR and Rap.</p

    Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems

    Get PDF
    Bacteria commonly exist in high cell density populations, making them prone to viral predation and horizontal gene transfer (HGT) through transformation and conjugation. To combat these invaders, bacteria possess an arsenal of defenses, such as CRISPR-Cas adaptive immunity. Many bacterial populations coordinate their behavior as cell density increases, using quorum sensing (QS) signaling. In this study, we demonstrate that QS regulation results in increased expression of the type I-E, I-F, and III-A CRISPR-Cas systems in Serratia\textit{Serratia} cells in high-density populations. Strains unable to communicate via QS were less effective at defending against invaders targeted by any of the three CRISPR-Cas systems. Additionally, the acquisition of immunity by the type I-E and I-F systems was impaired in the absence of QS signaling. We propose that bacteria can use chemical communication to modulate the balance between community-level defense requirements in high cell density populations and host fitness costs of basal CRISPR-Cas activity.This work was supported by a Rutherford Discovery Fellowship (P.C.F.) from the Royal Society of New Zealand (RSNZ) and the Marsden Fund, RSNZ. A.G.P. was supported by a University of Otago Doctoral Scholarship. G.P.C.S. is funded by the Biotechnology and Biological Sciences Research Council, UK

    Deletion of PTPN22 improves effector and memory CD8+ T cell responses to tumors

    Get PDF
    Adoptive T cell therapy (ACT) has been established as an efficacious methodology for the treatment of cancer. Identifying targets to enhance the antigen recognition, functional capacity and longevity of T cells has the potential to broaden the applicability of these approaches in the clinic. We previously reported that targeting expression of phosphotyrosine phosphatase, non-receptor type (PTPN) 22 in effector CD8+ T cells enhances the efficacy of ACT for tumor clearance in mice. In the current work, we demonstrate that, upon ACT, PTPN22-deficient effector CD8+ T cells afford greater protection against tumors expressing very low affinity antigen, but do not survive long-term in vivo. Persistence of CD8+ T cells following tumor clearance is improved by ACT of memory phenotype cells that have a distinct metabolic phenotype as compared to effector T cells. Importantly, PTPN22-deficient T cells have comparable capacity to form long-lived memory cells in vivo but enhanced anti-tumor activity in vivo and effector responses ex vivo. These findings provide key insight into the regulation of effector and memory T cell responses in vivo, and indicate that PTPN22 is a rationale target to improve ACT for cancer

    Inside the Loop: The Audio Functionality of Inside

    Get PDF
    The manner in which soundscapes evolve and change during gameplay can have many implications regarding player experience. INSIDE (Playdead in INSIDE. Released on Microsoft Windows, Playstation 4, Xbox One, Nintendo Switch and iOS, 2016) features a gameplay section in which rhythmic audio cues loop continuously both during gameplay and after player death. This paper uses this aspect of the soundtrack as a case study, examining the effects of looping sound effects and abstract musical cues on player immersion, ludic functionality, and episodic engagement. The concept of spectromorphology proposed by Smalley (Organised Sound 2(2):107–126, 1997) is used to analyse the way in which musical cues can retain ludic functionality and promote immersion in the absence of diegetic sound design. The “musical suture” (Kamp, in: Ludomusicology: approaches to video game music, Equinox, Sheffield, 2016) created by continuously looping audio during death and respawn is also examined with regards to immersing the player within an evolving soundscape
    corecore