5,024 research outputs found

    Surface compositional mapping by spectral ratioing of ERTS-1 MSS data in the Wind River Basin and Range, Wyoming

    Get PDF
    The author has identified the following significant results. ERTS data collected in August and October 1972 were processed on digital and special purpose analog recognition computers using ratio enhancement and pattern recognition. Ratios of band-averaged laboratory reflectances of some minerals and rock types known to be in the scene compared favorably with ratios derived from the data by ratio normalization procedures. A single ratio display and density slice of the visible channels of ERTS MSS data, Channel 5/Channel 4 (R5,4), separated the Triassic Chugwater formation (redbeds) from other formations present and may have enhanced iron oxide minerals present at the surface in abundance. Comparison of data sets collected over the same area at two different times of the year by digital processing indicated that spectral variation due to environmental factors was reduced by ratio processing

    Slow flows of an relativistic perfect fluid in a static gravitational field

    Full text link
    Relativistic hydrodynamics of an isentropic fluid in a gravitational field is considered as the particular example from the family of Lagrangian hydrodynamic-type systems which possess an infinite set of integrals of motion due to the symmetry of Lagrangian with respect to relabeling of fluid particle labels. Flows with fixed topology of the vorticity are investigated in quasi-static regime, when deviations of the space-time metric and the density of fluid from the corresponding equilibrium configuration are negligibly small. On the base of the variational principle for frozen-in vortex lines dynamics, the equation of motion for a thin relativistic vortex filament is derived in the local induction approximation.Comment: 4 pages, revtex, no figur

    Velocity Profiles in Slowly Sheared Bubble Rafts

    Full text link
    Measurements of average velocity profiles in a bubble raft subjected to slow, steady-shear demonstrate the coexistence between a flowing state and a jammed state similar to that observed for three-dimensional foams and emulsions [Coussot {\it et al,}, Phys. Rev. Lett. {\bf 88}, 218301 (2002)]. For sufficiently slow shear, the flow is generated by nonlinear topological rearrangements. We report on the connection between this short-time motion of the bubbles and the long-time averages. We find that velocity profiles for individual rearrangement events fluctuate, but a smooth, average velocity is reached after averaging over only a relatively few events.Comment: typos corrected, figures revised for clarit

    Shear-banding in a lyotropic lamellar phase, Part 2: Temporal fluctuations

    Full text link
    We analyze the temporal fluctuations of the flow field associated to a shear-induced transition in a lyotropic lamellar phase: the layering transition of the onion texture. In the first part of this work [Salmon et al., submitted to Phys. Rev. E], we have evidenced banded flows at the onset of this shear-induced transition which are well accounted for by the classical picture of shear-banding. In the present paper, we focus on the temporal fluctuations of the flow field recorded in the coexistence domain. These striking dynamics are very slow (100--1000s) and cannot be due to external mechanical noise. Using velocimetry coupled to structural measurements, we show that these fluctuations are due to a motion of the interface separating the two differently sheared bands. Such a motion seems to be governed by the fluctuations of σ\sigma^\star, the local stress at the interface between the two bands. Our results thus provide more evidence for the relevance of the classical mechanical approach of shear-banding even if the mechanism leading to the fluctuations of σ\sigma^\star remains unclear

    Velocity profiles in shear-banding wormlike micelles

    Full text link
    Using Dynamic Light Scattering in heterodyne mode, we measure velocity profiles in a much studied system of wormlike micelles (CPCl/NaSal) known to exhibit both shear-banding and stress plateau behavior. Our data provide evidence for the simplest shear-banding scenario, according to which the effective viscosity drop in the system is due to the nucleation and growth of a highly sheared band in the gap, whose thickness linearly increases with the imposed shear rate. We discuss various details of the velocity profiles in all the regions of the flow curve and emphasize on the complex, non-Newtonian nature of the flow in the highly sheared band.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Structural characteristics of positionally-disordered lattices: relation to the first sharp diffraction peak in glasses

    Full text link
    Positional disorder has been introduced into the atomic structure of certain crystalline lattices, and the orientationally-averaged structure factor S(k) and pair-correlation function g(r) of these disordered lattices have been studied. Analytical expressions for S(k) and g(r) for Gaussian positional disorder in 2D and 3D are confirmed with precise numerical simulations. These analytic results also have a bearing on the unsolved Gauss circle problem in mathematics. As the positional disorder increases, high-k peaks in S(k) are destroyed first, eventually leaving a single peak, that with the lowest-k value. The pair-correlation function for lattices with such high levels of positional disorder exhibits damped oscillations, with a period equal to the separation between the furthest-separated (lowest-k) lattice planes. The last surviving peak in S(k) is, for example for silicon and silica, at a wavevector nearly identical to that of the experimentally-observed first sharp diffraction peak (FSDP) in the amorphous phases of those materials. Thus, for these amorphous materials at least, the FSDP can be regarded as arising from scattering from atomic configurations equivalent to the single family of positionally-disordered local Bragg planes having the furthest separation.Comment: v2: changes in response to referees' comments: Figure 2 made more readable, improved discussion of height of peaks in S(k), other minor changes 4 pages, 3 figures, submitted to Physical Review

    Social presence in the 21st Century: an adjustment to the Community of Inquiry framework

    Get PDF
    The Community of Inquiry framework, originally proposed by Garrison, Anderson and Archer (2000) identifies teaching, social and cognitive presences as central to a successful online educational experience. This article presents the findings of a study conducted in Uruguay between 2007 and 2010. The research aimed to establish the role of cognitive, social and teaching presences in the professional development of 40 English language teachers on Continuous Professional Development (CPD) programmes delivered in blended learning settings. The findings suggest that teaching presence and cognitive presence have themselves 'become social'. The research points to social presence as a major lever for engagement, sense-making and peer support. Based on the patterns identified in the study, this article puts forward an adjustment to the Community of Inquiry framework, which shows social presence as more prominent within the teaching and cognitive constructs than the original version of the framework suggests

    The bright-end galaxy candidates at z ~ 9 from 79 independent HST fields

    Get PDF
    We present a full data analysis of the pure-parallel Hubble Space Telescope (HST) imaging observations in the Brightest of Reionizing Galaxies Survey (BoRG[z9]) in Cycle 22. The medium-deep exposures with five HST/WFC3IR+UVIS filter bands from 79 independent sightlines (~370 arcmin^2) provide the least biased determination of number density for z>9 bright galaxies against cosmic variance. After a strict two-step selection for candidate galaxies, including dropout color and photometric redshift analyses, and revision of previous BoRG candidates, we identify one source at z~10 and two sources at z~9. The z~10 candidate shows evidence of line-of-sight lens magnification (mu~1.5), yet it appears surprisingly luminous (MUV ~ -22.6\pm0.3 mag), making it one of the brightest candidates at z > 8 known (~ 0.3 mag brighter than the z = 8.68 galaxy EGSY8p7, spectroscopically confirmed by Zitrin and collaborators). For z ~ 9 candidates, we include previous data points at fainter magnitudes and find that the data are well fitted by a Schechter luminosity function with alpha ~ -2.1, MUV ~ -21.5 mag, and log phi ~ -4.5 Mpc^-3mag^-1, for the first time without fixing any parameters. The inferred cosmic star formation rate density is consistent with unaccelerated evolution from lower redshift.Comment: 18pages, 7figures, 6tables. accepted to the Astrophysical Journa

    Reassessment of the factors controlling temporal profiles of nitrate in polar ice cores using evidence from snow and atmospheric measurements

    No full text
    International audienceNitrate is frequently measured in ice cores, but its interpretation remains immature. Using daily snow surface concentrations of nitrate at Halley (Antarctica) for 2004?2005, we show that sharp spikes (>factor 2) in nitrate concentration can occur from day to day. Some of these spikes will be preserved in ice cores. Many of them are associated with sharp increases in the concentration of sea salt in the snow. There is also a close association between the concentrations of aerosol nitrate and sea salt aerosol. This evidence is consistent with many of the spikes in deposited nitrate being due to the conversion or trapping of gas-phase nitrate, i.e. to enhanced deposition rather than enhanced atmospheric concentrations of NOy. Previously, sharp spikes in nitrate concentration (with concentration increases of up to a factor 4 seen in probably just one snowfall) have been assigned to sharp production events such as solar proton events (SPEs). We find that it is unlikely that SPEs can produce spikes of the kind seen. Taken together with our evidence that such spikes can be produced depositionally, we find that it is not possible to track past SPEs without carrying out a new multi-site and multi-analyte programme. Seasonal and interannual trends in nitrate concentration in cores from any single site cannot be interpreted in terms of production changes until the recycling of nitrate from central Antarctica to coastal Antarctica is better quantified. It might be possible to assess the interannual input of NOy to the Antarctic lower troposphere by using a network of cores to estimate variability in the total annual deposition across the continent (which we estimate to be 9±2×107 kg/a (as NO3?)), but it will first have to be established that the outflow across the coast can be ignored
    corecore