22 research outputs found

    Dynamic regulation of basement membrane protein levels promotes egg chamber elongation in Drosophila

    Get PDF
    AbstractBasement membranes (BMs) are sheet-like extracellular matrices that provide essential support to epithelial tissues. Recent evidence suggests that regulated changes in BM architecture can direct tissue morphogenesis, but the mechanisms by which cells remodel BMs are largely unknown. The Drosophila egg chamber is an organ-like structure that transforms from a spherical to an ellipsoidal shape as it matures. This elongation coincides with a stage-specific increase in Type IV Collagen (Col IV) levels in the BM surrounding the egg chamber; however, the mechanisms and morphogenetic relevance of this remodeling event have not been established. Here, we identify the Collagen-binding protein SPARC as a negative regulator of egg chamber elongation, and show that SPARC down-regulation is necessary for the increase in Col IV levels to occur. We find that SPARC interacts with Col IV prior to secretion and propose that, through this interaction, SPARC blocks the incorporation of newly synthesized Col IV into the BM. We additionally observe a decrease in Perlecan levels during elongation, and show that Perlecan is a negative regulator of this process. These data provide mechanistic insight into SPARC's conserved role in matrix dynamics and demonstrate that regulated changes in BM composition influence organ morphogenesis

    A screen for round egg mutants in Drosophila identifies tricornered, furry, and misshapen as regulators of egg chamber elongation.

    Get PDF
    The elongation of tissues and organs during embryonic development results from the coordinate polarization of cell behaviors with respect to the elongation axis. Within the Drosophila melanogaster ovary, initially spherical egg chambers lengthen dramatically as they develop to create the elliptical shape of the mature egg. This morphogenesis depends on an unusual form of planar polarity within the egg chamber's outer epithelial cell layer known as the follicle cells. Disruption of follicle cell planar polarity leads to the production of round rather than elongated eggs; however, the molecular mechanisms that control this tissue organization are poorly understood. Starting from a broadly based forward genetic screen, we have isolated 12 new round egg complementation groups, and have identified four of the mutated genes. In mapping the largest complementation group to the fat2 locus, we unexpectedly discovered a high incidence of cryptic fat2 mutations in the backgrounds of publicly available stocks. Three other complementation groups correspond to the genes encoding the cytoplasmic signaling proteins Tricornered (Trc), Furry (Fry), and Misshapen (Msn). Trc and Fry are known members of an NDR kinase signaling pathway, and as a Ste20-like kinase, Msn may function upstream of Trc. We show that all three proteins are required for follicle cell planar polarity at early stages of egg chamber elongation and that Trc shows a planar polarized distribution at the basal follicle cell surface. These results indicate that this new mutant collection is likely to provide novel insight into the molecular mechanisms controlling follicle cell planar polarity and egg chamber elongation

    ESCargo: a regulatable fluorescent secretory cargo for diverse model organisms

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Casler, J. C., Zajac, A. L., Valbuena, F. M., Sparvoli, D., Jeyifous, O., Turkewitz, A. P., Horne-Badovinac, S., Green, W. N., & Glick, B. S. ESCargo: a regulatable fluorescent secretory cargo for diverse model organisms. Molecular Biology of the Cell, (2020): mbcE20090591, doi:10.1091/mbc.E20-09-0591.Membrane traffic can be studied by imaging a cargo protein as it transits the secretory pathway. The best tools for this purpose initially block export of the secretory cargo from the endoplasmic reticulum (ER), and then release the block to generate a cargo wave. However, previously developed regulatable secretory cargoes are often tricky to use or specific for a single model organism. To overcome these hurdles for budding yeast, we recently optimized an artificial fluorescent secretory protein that exits the ER with the aid of the Erv29 cargo receptor, which is homologous to mammalian Surf4. The fluorescentsecretory protein forms aggregates in the ER lumen and can be rapidly disaggregated by addition of a ligand to generate a nearly synchronized cargo wave. Here we term this regulatable secretory proteinESCargo (Erv29/Surf4-dependent Secretory Cargo) and demonstrate its utility not only in yeast cells, but also in cultured mammalian cells, Drosophila cells, and the ciliate Tetrahymena thermophila. Kinetic studies indicate that rapid export from the ER requires recognition by Erv29/Surf4. By choosing an appropriate ER signal sequence and expression vector, this simple technology can likely be used withmany model organisms.This work was supported by NIH grant R01 GM104010 to BSG, by NIH grant R01 GM105783 to APT, by NIH grant R01 GM136961 and American Cancer Society grant RSG-14-176 to SHB, and by NIH grant R01 DA044760 to WNG. JCC was supported by NIH training grant T32 GM007183. AZ was supported by American Heart Association fellowship 16POST2726018 and American Cancer Society fellowship 132123-PF-18-025-01-CSM. Thanks for assistance with fluorescence microscopy to Vytas Bindokas and Christine Labno at the Integrated Microscopy Core Facility, which is supported by the NIH-funded Cancer Center Support Grant P30 CA014599. The pUASt-ManII-eGFP plasmid was a gift from Bing Ye, and the Ubi-Gal4 plasmid was a gift from Rick Fehon.2020-12-2

    Cell–cell and cell–matrix interactions

    No full text

    Round and round gets you somewhere: collective cell migration and planar polarity in elongating Drosophila egg chambers

    Full text link
    U ovom završnom radu je prikazano konceptno rješenje CNC plazma rezača. U uvodu su prikazani različiti tipovi CNC strojeva te je opisan rad plazma rezača. U radu se pristupa konstruiranju potrebnih elemenata, a posebna pažnja je dana na koncipiranje reduktora koji je izveden primjenom zupčastog remena i remenica. Nakon izvršenog koncipiranja potrebnih elementa izvršen je izbor standardnih dijelova CNC strojeva. Također je izrađen i proračun potreban za određivanje momenta za rad stroja prema kojem su odabrani pogonski motori. Izvršeno je i koncipiranje elektro ormara te su opisane funkcije električnih komponenti koje će u ormaru biti ugrađene.In this final thesis, the conceptual solution of a CNC plasma cutter will be presented. The introduction will show the different types of CNC machines and describe the basic operation of plasma cutters. The paper approaches the construction of all necessary elements, and special attention is paid to the design of the reducer, which will be performed with a belt and pulleys. When the necessary elements are conceived, the standard parts of CNC machines will be selected. Calculations will be made to determine the required torque of the machine. According to that calculation selection of electric motor will be performed. In the case of electrical cabinets, its design will be performed and the functions of the electrical elements in it will be described
    corecore