20 research outputs found

    Generation and trapping of ketenes in flow

    No full text
    Ketenes were generated by the thermolysis of alkoxyalkynes under flow conditions, and then trapped with amines and alcohols to cleanly give amides and esters. For a 10 min reaction time, temperatures of 180, 160, and 140 °C were required for >95?% conversion of EtO, iPrO, and tBuO alkoxyalkynes, respectively. Variation of the temperature and flow rate with inline monitoring of the output by IR spectroscopy allowed the kinetic parameters for the conversion of 1-ethoxy-1-octyne to be easily estimated (Ea = 105.4 kJ/mol). Trapping of the in-situ-generated ketenes by alcohols to give esters required the addition of a tertiary amine catalyst to prevent competitive [2+2] addition of the ketene to the alkoxyalkyne precurso

    Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas

    Get PDF
    Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the nanoscale. We report on a nanoscale system consisting of endohedral fullerenes encapsulated within single-walled carbon nanotubes ((Kr@C60)@SWCNT), capable of the delivery and release of krypton atoms on-demand, via coalescence of host fullerene cages under the action of the electron beam (in situ) or heat (ex situ). The state and dynamics of Kr atoms were investigated by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). Kr atom positions were measured precisely using aberration-corrected high-resolution TEM (AC-HRTEM), aberration-corrected scanning TEM (AC-STEM), and single-atom spectroscopic imaging (STEM-EELS). The electron beam drove the formation of 2Kr@C120 capsules, in which van der Waals Kr2 and transient covalent [Kr2]+ bonding states were identified. Thermal coalescence led to the formation of longer coalesced nested nanotubes containing more loosely bound Krn chains (n = 3–6). In some instances, delocalization of Kr atomic positions was confirmed by STEM analysis as the transition to a one-dimensional (1D) gas, as Kr atoms were constrained to only one degree of translational freedom within long, well-annealed, nested nanotubes. Such nested nanotube structures were investigated by Raman spectroscopy. This material represents a highly compressed and dimensionally constrained 1D gas stable under ambient conditions. Direct atomic-scale imaging has revealed elusive bonding states and a previously unseen 1D gaseous state of matter of this noble gas element, demonstrating TEM to be a powerful tool in the discovery of chemistry at the single-atom level

    Synthesis of endohedral fullerenes by molecular surgery

    No full text
    Encapsulation of atoms or small molecules inside fullerenes provides a unique opportunity for study of the confined species in the isolated cavity, and the synthesis of closed C60 or C70 fullerenes with enclosed atoms or molecules has recently developed using the method of ‘molecular surgery’; in which an open-cage intermediate fullerene is the host for encapsu- lation of a guest species, before repair of the cage opening. In this work we review the main methods for cage-opening and closure, and the achievements of molecular surgery to date

    Thermolysis of 1,3-dioxin-4-ones: fast generation of kinetic data using in-line analysis under flow

    No full text
    International audienceRapid acquisition of kinetic data is demonstrated with a commercial meso-scale flow reactor, using a step-change in flow rate or ‘push-out’ from the flow line. For thermolysis of 1,3-dioxin-4-ones (1), we obtain excellent reproducibility in the activation energies measured from spectroscopic data collected by in-line UV or transmission FT-IR monitoring of the output during the transitional period between two flow rates (±3 kJ mol−1, 0.7 kcal mol−1). Analysis of multi-component UV and IR data is conducted using an orthogonal projection approach (multivariate curve resolution by alternating least squares) for complex spectra, or by calibration-less integration of non-overlapping peak absorbance. All analysis methods were validated using off-line 1H NMR analysis, and kinetic parameters obtained using the method of a flow rate step-change were validated against conventional steady-state measurements in which time-series data were acquired across multiple experiments. Thermal transfer and dispersion effects are addressed. The experimental methods described herein are valuable for accelerated reaction study and in process development

    Design of maleimide-functionalised electrodes for covalent attachment of proteins through free surface cysteine groups

    No full text
    Mixed two-component monolayers on glassy carbon are prepared by electrochemical oxidation of N-(2-aminoethyl)acetamide and mono-N-Boc-hexamethylenediamine in mixed solution. Subsequent N-deprotection, amide coupling and solid-phase synthetic steps lead to electrode-surface functionalisation with maleimide, with controlled partial coverage of this cysteine-binding group at appropriate dilution for covalent immobilisation of a model redox-active protein, cytochrome c, with high coverage (?7.5?pmol?cm?2)

    Synthesis of Ar@C<sub>60</sub> using molecular surgery

    No full text
    Synthesis of Ar@C60 is described, using a route in which high-pressure argon filling of an open-fullerene and photochemical desulfinylation are the key steps for &gt;95% encapsulation of the noble gas. Enrichment by recycling HPLC leads to quantitative incorporation of argon in the product endofullerene, with a mass recovery of tens of milligrams, allowing the first characterisation of fine structure in the solution 13C NMR spectrum

    An internuclear J-coupling of <sup>3</sup>He induced by molecular conïŹnement

    No full text
    The solution-state 13C NMR spectrum of the endofullerene 3He@C60 displays a doublet structure due to a J-coupling of magnitude 77.5 ± 0.2 mHz at 340K between the 3He nucleus and a 13C nucleus of the enclosing carbon surface. The J-coupling increases in magnitude with increasing temperature. Quantum chemistry calculations successfully predict the approximate magnitude of the coupling. This observation shows that the mutual proximity of molecular or atomic species is suïŹƒcient to induce a ïŹnite scalar nuclear spin-spin coupling, providing that translational motion is restricted by conïŹnement. The phenomenon may have applications to the study of surface interactions and to mechanically bound species

    Synthesis and evaluation of a (3R, 6S, 9S)-2-oxo-1-azabicyclo[4.3.0]nonane scaffold as a mimic of Xaa-transPro in poly-L-proline type II helix conformation

    No full text
    We describe the development of a small-molecule mimic of Xaa-trans-Pro dipeptide in poly-L-proline type II helix conformation, based upon a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane core structure. Stereoselective synthesis of the mimic from L-pyroglutamic acid is achieved in twelve linear steps and 9.9% yield. Configurational and conformational analyses are conducted using a combination of 1H NMR spectroscopy, X-ray crystallography and circular dichroism spectroscopy; and evaluation of the mimic as a promising surrogate dipeptide, in a protein–protein interaction between the SH3 domain of human Fyn kinase (Fyn SH3) and peptidomimetics of its biological ligand, are conducted by 1H-15N HSQC NMR titration experiments

    High-Throughput Synthesis and Electrochemical Screening of a Library of Modified Electrodes for NADH Oxidation

    No full text
    We report the combinatorial preparation and high-throughput screening of a library of modified electrodes designed to catalyze the oxidation of NADH. Sixty glassy carbon electrodes were covalently modified with ruthenium­(II) or zinc­(II) complexes bearing the redox active 1,10-phenanthroline-5,6-dione (phendione) ligand by electrochemical functionalization using one of four different linkers, followed by attachment of one of five different phendione metal complexes using combinatorial solid-phase synthesis methodology. This gave a library with three replicates of each of 20 different electrode modifications. This library was electrochemically screened in high-throughput (HTP) mode using cyclic voltammetry. The members of the library were evaluated with regard to the surface coverage, midpeak potential, and voltammetric peak separation for the phendione ligand, and their catalytic activity toward NADH oxidation. The surface coverage was found to depend on the length and flexibility of the linker and the geometry of the metal complex. The choices of linker and metal complex were also found to have significant impact on the kinetics of the reaction between the 1,10-phenanthroline-5,6-dione ligand and NADH. The rate constants for the reaction were obtained by analyzing the catalytic currents as a function of NADH concentration and scan rate, and the influence of the surface molecular architecture on the kinetics was evaluated

    Synthesis and <sup>83</sup>Kr NMR Spectroscopy of Kr@C<sub>60</sub>

    No full text
    Synthesis of Kr@C60 is achieved by quantitative high-pressure encapsulation of the noble gas into an open-fullerene, and subsequent cage closure. Krypton is the largest noble gas entrapped in C60 using ‘molecular surgery’ and Kr@C60 is prepared with &gt;99.4% incorporation of the endohedral atom, in ca. 4% yield from C60. Encapsulation in C60 causes a shift of the 83Kr resonance by −39.5 ppm with respect to free 83Kr in solution. The 83Kr spin-lattice relaxation time T1 is approximately 36 times longer for Kr encapsulated in C60 than for free Kr in solution. This is the first characterisation of a stable Kr compound by 83Kr NMR
    corecore