44 research outputs found

    Self-Contempt, the Working Alliance and Outcome in Treatments for Borderline Personality Disorder: An Exploratory Study.

    Get PDF
    Objective. We examined the role of expressed self-contempt in therapy for borderline personality disorder (BPD). Based on previous literature on BPD, we assumed an association between the self-contempt and the core symptoms of BPD. We also studied the progression of expressed self-contempt during the treatment and its effect on the alliance and the outcomes of treatment.Method. We rated the expressed self-contempt in 148 tape-recorded sessions with patients with BPD (N = 50), during a brief psychiatric treatment. We rated self-contempt at three time-points, using an observer-rate scale. Self-reported questionnaires were used to assess symptoms and the working alliance.Results. There are some associations between self-contempt and BPD symptoms. Expressed self-contempt did not change during the treatment. One measure of self-contempt was associated with a weaker alliance rated by the patients and with a stronger alliance rated by the therapists. The expression of high self-contempt was not predictive of outcomes when the initial level of problems was controlled for.Conclusions. The results highlight the importance to examine the complex effects of self-contempt in BPD undergoing treatment in a differentiated manner and suggest to clinicians and researchers to be attentive to this specific emotional state, and change therein, in psychotherapy.Keywords: Self-contempt; Borderline Personality Disorder; Brief Treatment; Therapeutic Alliance; EmotionTrial registration: ClinicalTrials.gov identifier: NCT01896024

    CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease

    Get PDF
    IFN-γ–producing CD4 T cells are required for protection against Mycobacterium tuberculosis (Mtb) infection, but the extent to which IFN-γ contributes to overall CD4 T cell-mediated protection remains unclear. Furthermore, it is not known if increasing IFN-γ production by CD4 T cells is desirable in Mtb infection. Here we show that IFN-γ accounts for only ~30% of CD4 T cell-dependent cumulative bacterial control in the lungs over the first six weeks of infection, but \u3e80% of control in the spleen. Moreover, increasing the IFN-γ–producing capacity of CD4 T cells by ~2 fold exacerbates lung infection and leads to the early death of the host, despite enhancing control in the spleen. In addition, we show that the inhibitory receptor PD-1 facilitates host resistance to Mtb by preventing the detrimental over-production of IFN-γ by CD4 T cells. Specifically, PD-1 suppressed the parenchymal accumulation of and pathogenic IFN-γ production by the CXCR3+KLRG1-CX3CR1- subset of lung-homing CD4 T cells that otherwise mediates control of Mtb infection. Therefore, the primary role for T cell-derived IFN-γ in Mtb infection is at extra-pulmonary sites, and the host-protective subset of CD4 T cells requires negative regulation of IFN-γ production by PD-1 to prevent lethal immune-mediated pathology

    Cell Type–Specific Transcriptome Analysis Reveals a Major Role for Zeb1 and miR-200b in Mouse Inner Ear Morphogenesis

    Get PDF
    Cellular heterogeneity hinders the extraction of functionally significant results and inference of regulatory networks from wide-scale expression profiles of complex mammalian organs. The mammalian inner ear consists of the auditory and vestibular systems that are each composed of hair cells, supporting cells, neurons, mesenchymal cells, other epithelial cells, and blood vessels. We developed a novel protocol to sort auditory and vestibular tissues of newborn mouse inner ears into their major cellular components. Transcriptome profiling of the sorted cells identified cell type–specific expression clusters. Computational analysis detected transcription factors and microRNAs that play key roles in determining cell identity in the inner ear. Specifically, our analysis revealed the role of the Zeb1/miR-200b pathway in establishing epithelial and mesenchymal identity in the inner ear. Furthermore, we detected a misregulation of the ZEB1 pathway in the inner ear of Twirler mice, which manifest, among other phenotypes, malformations of the auditory and vestibular labyrinth. The association of misregulation of the ZEB1/miR-200b pathway with auditory and vestibular defects in the Twirler mutant mice uncovers a novel mechanism underlying deafness and balance disorders. Our approach can be employed to decipher additional complex regulatory networks underlying other hearing and balance mouse mutants

    Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides

    No full text
    We introduce a new class of semisynthetic fluorescent biosensors for the quantification of free nicotinamide adenine dinucleotide (NAD+) and ratios of reduced to oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) in live cells. Sensing is based on controlling the spatial proximity of two synthetic fluorophores by binding of NAD(P) to the protein component of the sensor. The sensors possess a large dynamic range, can be excited at long wavelengths, are pH-insensitive, have tunable response range and can be localized in different organelles. Ratios of free NADPH/NADP+ are found to be higher in mitochondria compared to those found in the nucleus and the cytosol. By recording free NADPH/NADP+ ratios in response to changes in environmental conditions, we observe how cells can react to such changes by adapting metabolic fluxes. Finally, we demonstrate how a comparison of the effect of drugs on cellular NAD(P) levels can be used to probe mechanisms of action

    Calibration of a mixed-signal power network transient stability analysis emulator

    No full text
    The emerging field of power system emulation for real time smart grid management is very demanding in terms of speed and accuracy. This paper provides detailed information about the electronics calibration process of a high-speed power network emulator dedicated to the transient stability analysis of power systems. This emulator uses mixed-signal hardware to model the dynamic behavior of a power network. Special design allows the self-calibration of the analog electronics through successive measurements and correction steps. The calibration operation guarantees high resolution of the transient stability analysis results, so that they can be reliably used for operational planning and control on real power networks

    Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4 T Cells during Tuberculosis

    Get PDF
    Recent data indicate that the differentiation state of Th1 cells determines their protective capacity against tuberculosis. Therefore, we examined the role of Th1-polarizing factors in the generation of protective and non-protective subsets of Mtb-specific Th1 cells. We find that IL-12/23p40 promotes Th1 cell expansion and maturation beyond the CD73+CXCR3+T-betdim stage, and T-bet prevents deviation of Th1 cells into Th17 cells. Nevertheless, IL- 12/23p40 and T-bet are also essential for the production of a prominent subset of intravascular CX3CR1+KLRG1+ Th1 cells that persists poorly and can neither migrate into the lung parenchyma nor control Mtb growth. Furthermore, T-bet suppresses development of CD69+CD103+ tissue resident phenotype effectors in lung. In contrast, Th1-cell-derived IFN-γ inhibits the accumulation of intravascular CX3CR1+KLRG1+ Th1 cells. Thus, although IL-12 and T-bet are essential host survival factors, they simultaneously oppose lung CD4 T cell responses at several levels, demonstrating the dual nature of Th1 polarization in tuberculosis

    Let's twist

    No full text

    CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease

    Get PDF
    IFN-γ–producing CD4 T cells are required for protection against Mycobacterium tuberculosis (Mtb) infection, but the extent to which IFN-γ contributes to overall CD4 T cell-mediated protection remains unclear. Furthermore, it is not known if increasing IFN-γ production by CD4 T cells is desirable in Mtb infection. Here we show that IFN-γ accounts for only ~30% of CD4 T cell-dependent cumulative bacterial control in the lungs over the first six weeks of infection, but >80% of control in the spleen. Moreover, increasing the IFN-γ–producing capacity of CD4 T cells by ~2 fold exacerbates lung infection and leads to the early death of the host, despite enhancing control in the spleen. In addition, we show that the inhibitory receptor PD-1 facilitates host resistance to Mtb by preventing the detrimental over-production of IFN-γ by CD4 T cells. Specifically, PD-1 suppressed the parenchymal accumulation of and pathogenic IFN-γ production by the CXCR3+KLRG1-CX3CR1- subset of lung-homing CD4 T cells that otherwise mediates control of Mtb infection. Therefore, the primary role for T cell-derived IFN-γ in Mtb infection is at extra-pulmonary sites, and the host-protective subset of CD4 T cells requires negative regulation of IFN-γ production by PD-1 to prevent lethal immune-mediated pathology
    corecore