15 research outputs found

    Defective fibrin deposition and thrombus stability in Bambi ‐/‐ mice is mediated by elevated anticoagulant function

    Get PDF
    BACKGROUND: Bone morphogenetic and activin membrane-bound inhibitor (BAMBI) is a transmembrane protein related to the type I transforming growth factor- β (TGF-β) receptor family that is present on both platelets and endothelial cells (ECs). Bambi-deficient mice exhibit reduced hemostatic function and thrombus stability characterized by an increased embolization. OBJECTIVE: We aimed to delineate how BAMBI influences endothelial function and thrombus stability. METHODS: Bambi-deficient mice were subjected to the laser-induced thrombosis model where platelet and fibrin accumulation was evaluated. Expression of thrombomodulin and tissue factor pathway inhibitor (TFPI) was also assessed in these mice. RESULTS: Thrombus instability in Bambi-/- mice was associated with a profound defect in fibrin deposition. Injection of hirudin into Bambi+/+ mice prior to thrombus formation recapitulated the Bambi-/- thrombus instability phenotype. In contrast, hirudin had no additional effect upon thrombus formation in Bambi-/- mice. Deletion of Bambi in ECs resulted in mice with defective thrombus stability caused by decreased fibrin accumulation. Increased levels of the anticoagulant proteins TFPI and thrombomodulin were detected in Bambi-/- mouse lung homogenates. Endothelial cells isolated from Bambi-/- mouse lungs exhibited enhanced ability to activate protein C due to elevated thrombomodulin levels. Blocking thrombomodulin and TFPI in vivo fully restored fibrin accumulation and thrombus stability in Bambi-/- mice. CONCLUSIONS: We demonstrate that endothelial BAMBI influences fibrin generation and thrombus stability by modulating thrombomodulin and TFPI anticoagulant function of the endothelium; we also highlight the importance of these anticoagulant proteins in the laser-induced thrombosis model

    The GPIbα intracellular tail - role in transducing VWF- and collagen/GPVI-mediated signaling.

    Get PDF
    The GPIbT-VWF A1 domain interaction is essential for platelet tethering under high shear. Synergy between GPIbα and GPVI signaling machineries has been suggested previously, however its molecular mechanism remains unclear. We generated a novel GPIbα transgenic mouse (GpIbαΔsig/Δsig) by CRISPR-Cas9 technology to delete the last 24 residues of the GPIbα intracellular tail that harbors the 14-3-3 and phosphoinositide-3 kinase binding sites. GPIbαΔsig/Δsig platelets bound VWF normally under flow. However, they formed fewer filopodia on VWF/botrocetin in the presence of a oIIbI3 blocker, demonstrating that despite normal ligand binding, VWF-dependent signaling is diminished. Activation of GpIbαΔsig/Δsig platelets with ADP and thrombin was normal, but GpIbαΔsig/Δsig platelets stimulated with collagen-related-peptide (CRP) exhibited markedly decreased P-selectin exposure and eIIbI3 activation, suggesting a role for the GpIbaaintracellular tail in GPVI-mediated signaling. Consistent with this, while haemostasis was normal in GPIbαΔsig/Δsig mice, diminished tyrosine-phosphorylation, (particularly pSYK) was detected in CRP-stimulated GpIbαΔsig/Δsig platelets as well as reduced platelet spreading on CRP. Platelet responses to rhodocytin were also affected in GpIbαΔsig/Δsig platelets but to a lesser extent than those with CRP. GpIbαΔsig/Δsig platelets formed smaller aggregates than wild-type platelets on collagen-coated microchannels at low, medium and high shear. In response to both VWF and collagen binding, flow assays performed with plasma-free blood or in the presence of bIIbI3- or GPVI-blockers suggested reduced bIIbI3 activation contributes to the phenotype of the GpIbαΔsig/Δsig platelets. Together, these results reveal a new role for the intracellular tail of GPIbiiin transducing both VWF-GPIbGGand collagen-GPVI signaling events in platelets

    Enhanced activity of an ADAMTS-13 variant (R568K/F592Y/R660K/Y661F/Y665F) against platelet agglutination in vitro and in a murine model of acute ischemic stroke.

    Get PDF
    Essentials ADAMTS13 requires a substrate-induced conformational change to attain full activity in vitro. The efficacy of wild type ADAMTS13 in models of thrombosis/stroke may be enhanced by pre-activation. A pre-activated ADAMTS13 variant exhibits enhanced proteolysis of platelet agglutinates. This ADAMTS13 variant is protective in a murine model of stroke at a lower dose than WT ADAMTS13. SUMMARY: Background ADAMTS-13 circulates in a closed conformation, only achieving full proteolytic activity against von Willebrand factor (VWF) following a substrate-induced conformational change. A gain-of-function (GoF) ADAMTS-13 variant (R568K/F592Y/R660K/Y661F/Y665F) is conformationally preactivated. Objectives To establish how the hyperactivity of GoF ADAMTS-13 is manifested in experimental models mimicking the occlusive arterial thrombi present in acute ischemic stroke. Methods The ability of GoF ADAMTS-13 to dissolve VWF-platelet agglutinates was examined with an assay of ristocetin-induced platelet agglutination and in parallel-flow models of arterial thrombosis. A murine model of focal ischemia was used to assess the thrombolytic potential of GoF ADAMTS-13. Results Wild-type (WT) ADAMTS-13 required conformational activation to attain full activity against VWF-mediated platelet capture under flow. In this assay, GoF ADAMTS-13 had an EC50 value more than five-fold lower than that of WT ADAMTS-13 (0.73 ± 0.21 nm and 3.81 ± 0.97 nm, respectively). The proteolytic activity of GoF ADAMTS-13 against preformed platelet agglutinates under flow was enhanced more than four-fold as compared with WT ADAMTS-13 (EC50 values of 2.5 ± 1.1 nm and 10.2 ± 5.6 nm, respectively). In a murine stroke model, GoF ADAMTS-13 restored cerebral blood flow at a lower dose than WT ADAMTS-13, and partially retained the ability to recanalize vessels when administration was delayed by 1 h. Conclusions The limited proteolytic activity of WT ADAMTS-13 in in vitro models of arterial thrombosis suggests an in vivo requirement for conformational activation. The enhanced activity of the GoF ADAMTS-13 variant translates to a more pronounced protective effect in experimental stroke

    Artificial MiRNA Knockdown of Platelet Glycoprotein lbα: A Tool for Platelet Gene Silencing.

    Get PDF
    In recent years, candidate genes and proteins implicated in platelet function have been identified by various genomic approaches. To elucidate their exact role, we aimed to develop a method to apply miRNA interference in platelet progenitor cells by using GPIbα as a proof-of-concept target protein. After in silico and in vitro screening of siRNAs targeting GPIbα (siGPIBAs), we developed artificial miRNAs (miGPIBAs), which were tested in CHO cells stably expressing GPIb-IX complex and megakaryoblastic DAMI cells. Introduction of siGPIBAs in CHO GPIb-IX cells resulted in 44 to 75% and up to 80% knockdown of GPIbα expression using single or combined siRNAs, respectively. Conversion of siGPIBAs to miGPIBAs resulted in reduced silencing efficiency, which could however be circumvented by tandem integration of two hairpins targeting different regions of GPIBA mRNA where 72% GPIbα knockdown was achieved. CHO GPIb-IX cells transfected with the miGPIBA construct displayed a significant decrease in their ability to aggregate characterized by lower aggregate numbers and size compared to control CHO GPIb-IX cells. More importantly, we successfully silenced GPIbα in differentiating megakaryoblastic DAMI cells that exhibited morphological changes associated with actin organization. In conclusion, we here report the successful use of miRNA technology to silence a platelet protein in megakaryoblastic cells and demonstrate its usefulness in functional assays. Hence, we believe that artificial miRNAs are suitable tools to unravel the role of a protein of interest in stem cells, megakaryocytes and platelets, thereby expanding their application to novel fields of basic and translational research

    Fibrinogen-mimicking, multiarm nanovesicles for human thrombus-specific delivery of tissue plasminogen activator and targeted thrombolytic therapy

    Get PDF
    Clinical use of tissue plasminogen activator (tPA) in thrombolytic therapy is limited by its short circulation time and hemorrhagic side effects. Inspired by fibrinogen binding to activated platelets, we report a fibrinogen-mimicking, multiarm nanovesicle for thrombus-specific tPA delivery and targeted thrombolysis. This biomimetic system is based on the lipid nanovesicle coated with polyethylene glycol (PEG) terminally conjugated with a cyclic RGD (cRGD) peptide. Our experiments with human blood demonstrated its highly selective binding to activated platelets and efficient tPA release at a thrombus site under both static and physiological flow conditions. Its clot dissolution time in a microfluidic system was comparable to that of free tPA. Furthermore, we report a purpose-built computational model capable of simulating targeted thrombolysis of the tPA-loaded nanovesicle and with a potential in predicting the dynamics of thrombolysis in physiologically realistic scenarios. This combined experimental and computational work presents a promising platform for development of thrombolytic nanomedicines

    The role of CD8+ T-cell clones in immune thrombocytopenia.

    Get PDF
    Immune thrombocytopenia (ITP) is traditionally considered an antibody-mediated disease. However, a number of features suggest alternative mechanisms of platelet destruction. In this study, we use a multidimensional approach to explore the role of cytotoxic CD8+ T cells in ITP. We characterized patients with ITP and compared them with age-matched controls using immunophenotyping, next-generation sequencing of T-cell receptor (TCR) genes, single-cell RNA sequencing, and functional T-cell and platelet assays. We found that adults with chronic ITP have increased polyfunctional, terminally differentiated effector memory CD8+ T cells (CD45RA+CD62L-) expressing intracellular interferon gamma, tumor necrosis factor α, and granzyme B, defining them as TEMRA cells. These TEMRA cells expand when the platelet count falls and show no evidence of physiological exhaustion. Deep sequencing of the TCR showed expanded T-cell clones in patients with ITP. T-cell clones persisted over many years, were more prominent in patients with refractory disease, and expanded when the platelet count was low. Combined single-cell RNA and TCR sequencing of CD8+ T cells confirmed that the expanded clones are TEMRA cells. Using in vitro model systems, we show that CD8+ T cells from patients with ITP form aggregates with autologous platelets, release interferon gamma, and trigger platelet activation and apoptosis via the TCR-mediated release of cytotoxic granules. These findings of clonally expanded CD8+ T cells causing platelet activation and apoptosis provide an antibody-independent mechanism of platelet destruction, indicating that targeting specific T-cell clones could be a novel therapeutic approach for patients with refractory ITP

    Illustrated State-of-the-Art Capsules of the ISTH 2023 Congress

    Get PDF
    This year’s Congress of the International Society of Thrombosis and Haemostasis (ISTH) took place in person in Montréal, Canada, from June 24-28, 2023. The conference, held annually, highlighted cutting-edge advances in basic, translational, population and clinical sciences relevant to the Society. As for all ISTH congresses, we offered a special, congress-specific scientific theme; this year, the special theme was immunothrombosis. Certainly, over the last few years, COVID-19 infection and its related thrombotic and other complications have renewed interest in the concepts of thromboinflammation and immunothrombosis; namely, the relationship between inflammation, infection and clotting. Other main scientific themes of the Congress included Arterial Thromboembolism, Coagulation and Natural Anticoagulants, Diagnostics and Omics, Fibrinolysis and Proteolysis, Hemophilia and Rare Bleeding Disorders, Hemostatic System in Cancer, Inflammation and Immunity, Pediatrics, Platelet Disorders, von Willebrand Disease and Thrombotic Microangiopathies, Platelets and Megakaryocytes, Vascular Biology, Venous Thromboembolism and Women’s Health. Among other sessions, the program included 28 State-of-the-Art (SOA) sessions with a total of 84 talks given by internationally recognized leaders in the field. SOA speakers were invited to prepare brief illustrated reviews of their talks that were peer reviewed and are included in this article. These illustrated capsules highlight the major scientific advances with potential to impact clinical practice. Readers are invited to take advantage of the excellent educational resource provided by these illustrated capsules. They are also encouraged to use the image in social media to draw attention to the high quality and impact of the science presented at the Congress
    corecore