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Abstract
In recent years, candidate genes and proteins implicated in platelet function have been

identified by various genomic approaches. To elucidate their exact role, we aimed to

develop a method to apply miRNA interference in platelet progenitor cells by using GPIbα

as a proof-of-concept target protein. After in silico and in vitro screening of siRNAs target-

ing GPIbα (siGPIBAs), we developed artificial miRNAs (miGPIBAs), which were tested in

CHO cells stably expressing GPIb-IX complex and megakaryoblastic DAMI cells. Introduc-

tion of siGPIBAs in CHO GPIb-IX cells resulted in 44 to 75% and up to 80% knockdown of

GPIbα expression using single or combined siRNAs, respectively. Conversion of siGPI-
BAs to miGPIBAs resulted in reduced silencing efficiency, which could however be circum-

vented by tandem integration of two hairpins targeting different regions ofGPIBAmRNA

where 72% GPIbα knockdown was achieved. CHO GPIb-IX cells transfected with the miG-
PIBA construct displayed a significant decrease in their ability to aggregate characterized

by lower aggregate numbers and size compared to control CHO GPIb-IX cells. More

importantly, we successfully silenced GPIbα in differentiating megakaryoblastic DAMI

cells that exhibited morphological changes associated with actin organization. In conclu-

sion, we here report the successful use of miRNA technology to silence a platelet protein

in megakaryoblastic cells and demonstrate its usefulness in functional assays. Hence, we

believe that artificial miRNAs are suitable tools to unravel the role of a protein of interest in

stem cells, megakaryocytes and platelets, thereby expanding their application to novel

fields of basic and translational research.

Introduction
Platelets play a pivotal role in thrombosis and haemostasis but also in inflammatory processes
such as atherosclerosis or infectious diseases [1]. To further expand our understanding of
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platelets, several genomic, transcriptomic and proteomic studies have been performed leading
to the identification of thousands of candidate genes for which the vast majority of them are of
unknown function [2–4]. Gene silencing by RNA interference is a powerful approach to deter-
mine the function of a gene, however this cannot be applied directly to platelets as they are anu-
cleated cells. Direct introduction of small interfering RNAs (siRNAs) in platelets is further
hampered by low transfection efficiency and the high sensitivity of platelets to permeabilisation
techniques, resulting in an altered physiology [5]. The marginal synthesis of proteins by plate-
lets furthermore implies that a post-transcriptional technique such as RNA interference will
only have limited success when applied directly [6]. The study of platelets in which expression
of a protein is suppressed therefore requires stable genetic modification of either the megakar-
yocyte (progenitor of platelets) or hematopoietic stem and progenitor cells (HSPC), from
which transgenic human platelets can be generated [7].

RNA interference can be achieved by introducing siRNAs directly into target cells or be pro-
duced by longer RNA precursors such as short hairpin RNAs (shRNAs) or micro RNAs (miR-
NAs) [8]. Although shRNAmolecules have frequently been used to knock down expression of
a gene of interest in various cell types, a growing number of reports have shown cytotoxic
effects and immune responses triggered by shRNAs [9–12]. In light of these reports, artificial
miRNA sequences, in which the stem sequence of a natural miRNA has been replaced by a
sequence targeting the gene of interest represent a superior tool for efficient gene knockdown
[12, 13]. In addition, as opposed to polymerase type III promoter driven shRNAs, miRNAs can
be transcribed from polymerase type II promoters, which can allow targeting gene silencing to
a particular cell type [12]. There are only few examples of the use of shRNA technology to
genetically modify platelets via transduction of mouse or human HSPC, reviewed elsewhere
[7], [10, 14–16].

The aim of our study is therefore to establish miRNA as a powerful tool to genetically mod-
ify platelets or megakaryocytic cell lines to use in platelet functional assays. As proof of princi-
ple, we developed a miRNA-expressing vector targeting GPIbα, the most functionally
important subunit of the GPIb-V-IX complex. Absence or dysfunction of GPIb-V-IX results in
the Bernard-Soulier Syndrome, a bleeding disorder characterised not only by impaired platelet
adhesion, but also by macrothrombocytopenia, due to a disturbed link between the GPIb-V-IX
complex and the underlying cytoskeleton during platelet and/or MK formation [17].

We here report the use of miRNA-expressing vectors generated by incorporation of in vitro
validated siRNA duplexes into a human miRNA-30a (miR30) scaffold to successfully knock-
down a platelet gene (GPIbα) in two cell line models. We demonstrate that cells transfected
with miRNA vectors lose their ability to fully aggregate and display impaired actin cytoskeleton
rearrangement.

Materials & Methods

Cell culture
Chinese hamster ovary (CHO) cells expressing GPIbα, GPIbβ and GPIX on their surface
(CHO GPIb-IX) or CHO cells expressing only GPIbβ and GPIX and not GPIbα (CHO β9)
(both kind gifts from J.A. Lopez, Puget Sound Blood Center, Seattle, WA) were cultured in α
Minimum Essential Medium (Life Technologies, Carlsbad, CA) supplemented with 10% Fetal
Calf Serum, 1% Penicillin-Streptomycin and in the presence of G418 (Roche, Indianapolis, IN)
and/or methotrexate (Sigma-Aldrich, St. Louis, MO) as previously described [18]. Human
megakaryoblastic DAMI cells were obtained from ATCC (Manassas, VA) and grown in
RPMI1640 medium supplemented with 10% Fetal Calf Serum, 1% Penicillin-Streptomycin, 1%
MEMNEAA and 1% sodium-pyruvate (all from Life Technologies) at 37°C and 5% CO2. For
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differentiation experiments, 1μM PMA (Merck, Darmstadt, Germany) was added to DAMI
growth medium (hereafter referred to as differentiation medium).

siRNA selection and miRNA construction
After consultation of online designer tools from Life Technologies, Dharmacon and Ambion
and offline scoring according to known criteria [19, 20], three siRNA sequences were selected
targeted to the GPIBA transcript encoding GPIbα: siGPIBA-1, siGPIBA-2, siGPIBA-3, respec-
tively targeting the GPIBAmRNA starting at nucleotide 572, 660 and 852. Conversion of
siRNA duplexes to 22nt long miRNA was done by determining which nucleotides were best
omitted, based on scoring to the aforementioned criteria for siRNAs, and including a mismatch
at position 1 (Table 1). This resulted in the creation of miGPIBA-2 and miGPIBA-3 with pre-
dicted secondary structures as depicted in Figure A in S1 File. Integration of these miRNAs in a
human miR30 scaffold to generate precursor miRNAs (pre-miRNAs) and construction of
miRNA vectors was done according to Paddison et al. [21]. The DNA template for miGPIBA-2
was engineered as follow: 5’-TGCTGTTGACAGTGAGCG- CGAGAACTCGCTGTATACAATA
(sense miRNA)-TAGTGAAGCCACAGATGTA- TATTGTATACAGCGAGTTCTCT (antisense
miRNA)-TGCCTACTGCCTCGGA-3’ (bold: flanking sequence, italic: loop sequence, under-
scored: miRNA sequence) (Figure A in S1 File; Table 1). This template was amplified by PCR
using 5’-AAAAAAGATCTCGAGATCCAAGAAGGTATATTGCTGTTGACAGTGAGCG-3’ and
5’-AAAAAGGATCCAAGTCGACATCGTAGCCCTTGAAGTCCGAGGCAGTAGGCA-3’ as for-
ward and reverse primers, respectively. Following restriction digest, the PCR product was inte-
grated in a pCMV-eGFP vector (Clontech, Mountain View, CA) to generate the miRNA
vectors pCMV-miGPIBA-2-eGFP, pCMV-eGFP-miGPIBA-2, pCMV-miGPIBA-3-eGFP,
pCMV-miGPIBA-2+2-eGFP and pCMV-miGPIBA-2+3-eGFP (Figure B in S1 File). Non-tar-
geting miRNA vectors pCMV-miGPIBA-2NS-eGFP and pCMV-miGPIBA-3NS-eGFP served
as controls and were generated by mutating nucleotides 10–14 from sense and antisense
miRNA to their reverse complement, as this region is important for target mRNA cleavage [22,
23]. The resulting sense miRNA target sequences for pCMV-miGPIBA-2NS-eGFP and
pCMV-miGPIBA-3NS-eGFP were (5’-CGAGAACTCGGACAATACAAT-3’) and (5’-
CGTGCAGTGTCTGTATTCAGAC-3’), respectively.

Determination of siRNA and miRNAmediated knockdown in CHOGPIb-
IX cells
CHOGPIb-IX cells at 90% confluence were transfected in T-25 flasks with 240 pmol siRNA oli-
gos or 240 pmol Block IT fluorescent oligo (Life Technologies) to determine siRNA transfection

Table 1. Overview ofGPIBAmRNA sequences targeted by siRNA andmiRNA.

GPIBA mRNA siRNA miRNA

572 5’-GGAGAAGTCATCTGGCTAACAA-3’ siGPIBA-1 miGPIBA-1
5’-UGGAGAAGUCAUCUGGCUAACAA-3’ Not constructed

3’-ACCUCUUCAGUAGACCGAUUGUU-5’

660 5’-CAAGAGAACTCGCTGTATACAATA-3’ siGPIBA-2 miGPIBA-2

5’-CCAAGAGAACUCGCUGUAUACAAUA-3’ 5’- CGAGAACTCGCTGTATACAATA-3’

3’-GGUUCUCUUGAGCGACAUAUGUUAU-5’ 3’-TCTCTTGAGCGACATATGTTAT-5’

852 5’-GGCCAGTGTGCAGTGTGACAATTCA-3’ siGPIBA-3 miGPIBA-3
5’-GGCCAGUGUGCAGUGUGACAAUUCA-3’ 5’-CGTGCAGTGTGACAATTCAGAC-3’

3’-CCGGUCACACGUCACACUGUUAAGU-5’ 3’-ACACGTCACACTGTTAAGTCAG-5’

doi:10.1371/journal.pone.0132899.t001
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efficiency or alternatively 18 μg pCMV-miGPIBA-eGFP or 18 μg pCMV-eGFP using Lipofecta-
mine2000 (Life Technologies) according to the manufacturer’s instructions. Transfection effi-
ciencies for siRNA and miRNAmediated knockdown was assessed using Block IT fluorescent
oligos (Life Technologies) and pCMV-eGFP plasmid, respectively. As previously shown [24–
26], insertion of miRNA sequences targeted to a transgene in 5’ or 3’ of the ORF of a reporter
gene resulted in a nearly complete loss of eGFP expression (Figure A in S2 File).

Cells were stained 48h post transfection using the anti-GPIbαmonoclonal antibody
(moAb) 6B4 and a goat anti-mouse-PE secondary Ab (Jackson Immunoresearch, West Grove,
PA) [27]. After fixation, cells were analyzed on an EPICS XL-MCL Flow Cytometer (Beckman-
Coulter, Fullerton, CA). A gate was set for viable CHO GPIb-IX cells as determined by propi-
dium iodide staining (data not shown) where 10,000 events were collected. Analysis was done
using Flowing software 2.5 version (http://www.flowingsoftware.com/).

CHOGPIb-IX aggregation assay
The CHO GPIb-IX cell aggregation assay was performed as previously described with minor
modifications [28]. Cells grown at 90–95% confluence in a 12-well plate were transfected in
Optimem (Invitrogen) using per well a mixture of 1.5 μg pDNA and 3.71 μg polyethyleneimine
(Polysciences, Warrington, PA) resuspended in 150mMNaCl, which had been pre-incubated
for 20 min prior to transfection. After 24h, transfection solution was replaced with culture
medium for another 24h after which harvested cells (2x105 cells) were transferred to a 24-well
plate and incubated with 2.5 μg/ml von Willebrand factor (VWF) (Haemate P, CSL Behring,
King of Prussia, PA) and 1.4 mg/ml ristocetin (ABP, Surrey, UK). Cells were then placed on a
rotary shaker for 20 min at 360rpm and analysed on an Eclipse TE-200 inverted fluorescence
microscope (Nikon, Tokyo, Japan) coupled to an Orca R2 CCD camera (Hamamatsu Photon-
ics, Hamamatsu, Japan). For each condition, 4 experiments were conducted for all of which 3
contiguous pictures were taken and analysed using HC Image software (Hamamatsu Photon-
ics). In all experiments, cell aggregates were identified using HC Image software by excluding
single cells, doublets and triplets, and validated manually to remove eventual false aggregates
(e.g. dust, debris). The number of aggregates and the surface area covered by each aggregate
were then calculated using HC Image software.

DAMI immunolabelling
For each condition, 1x106 DAMI cells were transfected with pCMV-miGPIBA-2+3-eGFP,
pCMV-eGFP or with mock control differentiation medium using the Amaxa Nucleofector II
and Cell Line Nucleofector Kit C (both Lonza, Basel, Switzerland) according to the manufac-
turer’s instructions. Cells were cultured in differentiation medium for 48h, after which GPIbα
was detected using flow cytometry as described above. In parallel, immediately after nucleofec-
tion 1x105 cells were transferred to a Lab-Tek chamber (Thermo Fisher Scientific, Waltham,
MA) containing 1ml differentiation medium to examine the effects of GPIbα knockdown on
cell morphology. After 48h, cells were fixed in 4% paraformaldehyde and stained with anti-
GPIbαmoAb 6B4 (20 μg/ml final) and a rabbit anti-mouse-FITC secondary Ab (30 μg/ml
final) (Jackson Immunoresearch). The cytoskeleton was visualized by incubating cells with
phalloidine-TRITC (7.5 μg/ml final) (Merck Millipore, Billerica, MA) and cells were mounted
using ProLong Gold Antifade reagent containing DAPI (Life Technologies) for nuclear
counterstaining.

Cells were analysed using a Nikon C1 confocal laser scanning microscope (Nikon) equipped
with a Plan Apo VC 60× 1.4 NA oil immersion objective lens. Pictures were captured sequen-
tially to prevent bleaching using appropriate excitation and emission filters for each
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fluorophore (DAPI—405 nm Argon laser with 450/50 nm band pass filter; FITC– 488 nm
Helium-Neon laser with 525/50nm band pass filter and TRITC- 561nm Helium-Neon laser
with a 605/40nm band pass filter). Image analysis was performed using EZ-C1 software
(Nikon). Maximal length and width of the cells were determined by drawing a straight line on
the confocal images along the cell axis and another one perpendicular to it, respectively. The
cell aspect ratio was calculated by dividing the maximal width by the maximal length of each
cell (n = 3 experiments; 3 replicates per experiment).

Statistical analysis
All statistical analyses were performed using GraphPad Prism 5 (Graphpad Software, San
Diego, CA). All data were analyzed by unpaired Student t test or one-way analysis of variance
(ANOVA) followed by Dunnett’s or Tukey’s post-tests. Differences were considered statisti-
cally significant when � p� 0.05, �� p� 0.01 and ��� p� 0.001.

Results

In silico and in vitro siRNA selection and testing
As described under Materials and Methods, three siRNA sequences targeting different regions
of GPIBAmRNA were selected and their ability to mediate GPIbα knockdown was evaluated
48h after transfection of CHO GPIb-IX cells with the siRNA duplexes. Transfection efficiencies
using Oligo Block iT were around 45–50% 48h post transfection and were not significantly dif-
ferent between the experimental days (S1 Fig). A significant knockdown could be detected in
CHO GPIb-IX cells transfected with siGPIBA-2, siGPIBA-3 or in combination of the two:
65.4 ± 5.7%, 72.9 ± 8.5% and 74.7 ± 4.5%, respectively (Fig 1B, 1C, 1D and 1F; p<0.001).
Although siGPIBA-1 significantly downregulated GPIbα expression, it was not as efficient as
the other two siRNAs (44.3 ± 0.2% knockdown; p<0.05) (Fig 1A and 1F). As expected, using
siGPIBA-1 in combination with siGPIBA-2 and siGPIBA-3 did not significantly further
increase the knockdown of GPIbα expression (74.7 ± 4.5% versus 79.7 ± 1.5%) (Fig 1E and 1F).
Based on these results, siGPIBA-2 and siGPIBA-3 were selected for the development of
miRNAs.

Silencing of GPIbα by miRNA vectors
We developed miRNA vectors by omitting three nucleotides from siGPIBA-2 and siGPIBA-3
to generate miGPIBA-2 and miGPIBA-3 which were integrated in a human miR30 loop and
flanking sequences, creating pre-miRNAs (pre-miGPIBA-2 and pre-miGPIBA-3) which were
ultimately cloned into the pCMV-eGFP backbone in various configurations (S1 File, Table 1).
When analyzing the transfected cells for GFP expression, a dramatic decrease in expression lev-
els was observed in all CHO GPIb-IX cells transfected with miRNA vectors (Figure A in S2
File) as previously observed [23, 25, 26]. A loss of GFP expression was also observed when the
miRNA sequence was placed at the C-terminal of the reporter gene. Indeed, CHO GPIb-IX
cells transfected with pCMV-eGFP-miGPIBA-2 exhibited a dramatic decrease in GFP expres-
sion compared to CHO GPIb-IX cells transfected with pCMV-eGFP (Figure A in S2 File). In
light of these results, transfection efficiencies were determined using CHO GPIb-IX cells trans-
fected with pCMV-eGFP in parallel with the GPIBAmiRNA vectors and were routinely around
50% (Figure B in S2 File).

Although transfection with pCMV-miGPIBA-2-eGFP and pCMV-miGPIBA-3-eGFP
resulted in reduced GPIbα expression (41.1 ± 10.7% and 48.1 ± 22.6% knockdown, respec-
tively) (Fig 2A, 2B and 2E), it did not reach statistical significance. Similar results were also
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obtained with pCMV-eGFP-miGPIBA-2 (Fig 2E). Since mammalian miRNAs function mainly
by mRNA degradation for which binding of the central nucleotide 10–14 is critical, we
designed non-specific miRNAs by mutating this region of the sense and antisense sequence of
each miRNA to their reverse complement, thus generating pCMV-miGPIBA-2NS-eGFP and
pCMV-miGPIBA-3NS-eGFP (S1 File) [22, 23]. Transfection of CHO GPIb-IX cells with these
constructs indeed did not affect GPIbα expression thus confirming the specificity of miGPIBA-
2 and miGPIBA-3 (S2 Fig and data not shown).

In order to improve knockdown of GPIbα, we combined multiple miRNAs in a single plas-
mid as this approach has been reported to be successful (Figure B in S1 File) [26]. Remarkably,
expression of GPIbα in CHO GPIb-IX cells transfected with the pCMV-miGPIBA-2+2-eGFP
containing two identical miRNA sequences was not significantly decreased compared to con-
trol CHO GPIb-IX cells or cells transfected with a miRNA vector containing miGPIBA-2 or
miGPIBA-3 (38.6 ± 17.5% knockdown; p>0.05; Fig 2C and 2E). However, when using a combi-
nation of two different miRNA sequences, a significantly higher knockdown of GPIbα expres-
sion could be achieved compared to either individual miRNAs (71.9 ± 6.6%; p� 0.01) (Fig 2D
and 2E).

Fig 1. Knockdown of GPIbα expression following transfection of CHOGPIb-IX cells with siRNA.Representative flow cytometry histograms frommock
transfected cells (white) and cells transfected with (A) siGPIBA-1 (blue), (B) siGPIBA-2 (green), (C) siGPIBA-3 (red), (D) siGPIBA-2+3 (purple) and (E)
siGPIBA-1+2+3 (black) expressing GPIbα 48h post transfection. Negative control in which no anti-GPIbαmoAb 6B4 was added is depicted in each histogram
in grey. Percentages of cells expressing GPIbα are indicated next to each histogram. (F) Flow cytometry analysis representing mean fluorescence intensities
of each population of CHOGPIb-IX cells expressing GPIbα ± SEM (n>3). Statistical analysis was performed using Anova followed by Dunnett’s post-test (*
p<0.05; ** p<0.01).

doi:10.1371/journal.pone.0132899.g001
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GPIbα downregulation reduces ristocetin-induced vonWillebrand factor-
GPIb dependent cell aggregation
Since successful silencing of GPIbα should impair the interaction with its main ligand VWF,
we performed cell aggregation assays with mock, pCMV-eGFP or pCMV-miGPIBA-2+3-eGFP
transfected CHO GPIb-IX cells in the presence of VWF and ristocetin, which is needed to
induce the interaction between GPIbα and VWF in this type of assay. Following rotary shaking,
the number and size of aggregates formed were evaluated and was similar in pCMV-eGFP or
mock transfected CHO GPIb-IX cells (50.6 ± 9.9 vs. 57.0 ± 10.8 aggregates and 15.2 ± 1.6 vs.
11.9 ± 2.1 arbitrary units (A.U.), respectively) (Fig 3B, 3C, 3E and 3F). As expected, no aggre-
gate could be formed when VWF was omitted in the assay (Fig 3A). Transfection of CHO
GPIb-IX cells with pCMV-miGPIBA-2+3-eGFP exhibited reduced number (27.1 ± 4.1;
p<0.05) and size of the aggregates (5.1 ± 1.1 A.U., p� 0.01) (Fig 3D–3F). Further analysis
revealed that the average aggregate size was 32.7 ± 8.6% smaller in mean aggregate size, despite

Fig 2. miRNA-mediated knockdown of GPIbα by transfection of CHOGPIb-IX cells. Representative flow cytometry histograms from CHOGPIb-IX
control cells (white) and cells transfected with (A) pCMV-miGPIBA-2-eGFP (green), (B) pCMV-miGPIBA-3-eGFP (red), (C) pCMV-miGPIBA-2+2-eGFP
(orange), or (D) pCMV-miGPIBA-2+3-eGFP (purple) expressing GPIbα 48h post transfection. Negative control in which no anti-GPIbαmoAb 6B4 was added
is depicted in each histogram in grey. Percentages of cells expressing GPIbα are indicated next to each histogram. (F) Flow cytometry analysis representing
mean fluorescence intensities of each population of CHOGPIb-IX cells expressing GPIbα ± SEM (n>3). Statistical analysis was performed using Anova
followed by Dunnett’s post-test (** p<0.01).

doi:10.1371/journal.pone.0132899.g002

MiRNA Knockdown of GPIbα in Platelet/Megakaryoblastic Cell Lines

PLOS ONE | DOI:10.1371/journal.pone.0132899 July 15, 2015 7 / 15



the fact that only 15.4 ± 1.3% of the cells were successfully transfected and thus lacking GPIbα
expression. This prompted us to perform a control experiment in which CHO GPIb-IX cells
were mixed with CHO β9 cells in a 85:15 ratio before performing the aggregation assay, thus
mimicking the GPIBAmiRNA transfection conditions. Under these conditions, a reduction in
the number of aggregates (33.4 ± 1.6%) and mean aggregate size (27.0 ± 1.5%) was observed as
compared to a population of 100% CHO GPIb-IX cells, thus validating our results observed in
CHO GPIb-IX cells transfected with pCMV-miGPIBA-2+3-eGFP (S3 File).

Fig 3. Knockdown of GPIb-IX reduces ristocetin induced VWF-dependent CHOGPIb-IX cell
aggregation. CHOGPIb-IX cells were incubated with ristocetin without (A) or with (B-E) VWF on a rotary
shaker to induce aggregate formation. Representative overlay bright field and fluorescent (GFP) images from
(A-B) mock, (C) pCMV-eGFP and (D) pCMV-miGPIBA-2+3-eGFP transfected cells are shown. Quantitative
analysis was performed by measuring (E) the number of aggregates and (F) the aggregate size (a.u.:
arbitrary units). Data represent mean ± SEM (n = 4). Statistical analysis was performed using the unpaired
Student t test (* p<0.05).

doi:10.1371/journal.pone.0132899.g003
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Down regulation of GPIbα expression in megakaryoblastic DAMI cells
triggers reorganization of the actin network
Another hallmark of GPIbα dysfunction or deficiency is abnormal megakaryopoiesis and the
formation of giant platelets. Moreover, the validation of the miRNA constructs in human
megakaryocytic or megakaryoblastic cell types is an important milestone towards the ultimate
goal of achieving stable RNAi-mediated target gene knockdown in CD34+ HSPC. We therefore
studied the effects of GPIbα deficiency during megakaryopoiesis by knocking down GPIbα
expression in megakaryoblastic DAMI cells. A subset of the DAMI cell population expresses
the MK- and platelet-markers GPIb-V-IX and αIIbβ3. Surface expression of both receptors can
be upregulated by stimulating differentiation of the cells to a more mature phenotype [29]. In
our hands, PMA-induced differentiation led to shape change and adhesion of cells concomi-
tant with an increase in ploidy (from predominantly 2N to 4N and going up to 16N) and an
upregulation of both GPIbα (from 4.1 ± 1.0% to 25.3 ± 8.1%; Fig 4D) and αIIbβ3 (from
11.9 ± 0.7% to 73.2 ± 7.0%; n = 3) (data not shown). To validate the use of miRNA vectors in
MK/platelet lineage cells, DAMI cells were nucleofected with pCMV-miGPIBA-2+3-eGFP,
and stimulated with PMA to induce GPIbα expression. After 2 days, 64.4 ± 6.5% of eGFP-
nucleofected DAMI cells expressed eGFP. In contrast to mock- or eGFP-nucleofected DAMI
cells, no upregulation of GPIbα expression could be detected in pCMV-miGPIBA-2+3-eGFP
nucleofected DAMI cells and GPIbα expression remained at baseline expression levels
(2.6 ± 0.8%; p<0.05), attesting of a successful knockdown of GPIbα. In addition, overt differ-
ences in actin organization could be observed in GPIBAmiRNA-transfected cells compared to
mock- or eGFP-transfected cells, with GPIBAmiRNA-transfected DAMI cells displaying a
more stretched or elongated morphology (Fig 4A–4C). These morphological cell shape changes
could be quantified by calculating the cell aspect ratio which gives an estimate of overall cell
morphology. Cells lacking detectable GPIbα showed a significantly lower cell aspect ratio com-
pared to mock- and eGFP-transfected cells (0.57 ± 0.03 vs. 0.79 ± 0.03 and 0.78 ± 0.03 respec-
tively; p� 0.001) (Fig 4E), confirming that miRNA technology can be successfully used to
study the function of a candidate gene during megakaryopoiesis.

Discussion
Over the last decade, technological advances with genomics, transcriptomics or proteomics
have revolutionised human genetic research including our knowledge in platelet biology. Nev-
ertheless, it remains a challenge to assign function to thousands of candidate genes/proteins in
platelets as direct molecular biology approaches cannot be applied due to their anucleated
nature. We here report on the development of a tool using miRNA vectors to successfully
knockdown a platelet protein GPIbα in a megakaryoblastic cell line that could be applied to
HSPC in view to generate genetically modified human platelets.

We started developing our strategy by first selecting different siRNAs based on multiple
parameters defining an efficient siRNA capable of successfully downregulating a target gene.
All selected siRNAs were successful at downregulating GPIbα expression in CHO GPIb-IX
cells, albeit to a different extent, with siGPIBA-2 and miGPIBA-3 being the most powerful (Fig
1). These findings corroborate the general recommendation that despite extensive in silico
screening procedures and the publication of numerous siRNA design guidelines, only actual in
vitro or in vivo tests provides truly reliable information regarding the knockdown potential of a
siRNA [20, 21].

Although the use of siRNAs allows rapid screening for efficient target sequences, direct
introduction of siRNA in platelets is currently hampered by a low transfection efficiency [5].
Moreover, de novo synthesis of proteins in anucleate platelets only occurs from a limited
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number of cytoplasmic mRNAs [30] and most platelet proteins are synthesized in the MK
from which platelets originate [6]. Hence, the best method to obtain and study platelets or MK
lacking expression of one or more proteins is by genetic modification of nucleated platelet pro-
genitor cells. We therefore converted siRNAs to plasmid DNA-based miRNAs, which can be
transferred to vectors capable of integrating in the host genome, thus resulting in stable and
long term knockdown [31, 32].

A report from Amendola et al. suggests that the use of a scaffold derived from an endoge-
nous miRNA with abundant expression in the target cell type, results in a high silencing effi-
ciency [31]. Therefore, we opted to integrate the siRNA sequences in human miR30 loop and
flanking regions, since the presence of the endogenous human miR30 in human platelets has
been confirmed using microarray technology [33]. We used a miRNA vector where miRNA

Fig 4. Morphological changes in differentiating megakaryoblastic DAMI cells. (A-C) Representative confocal images of differentiating mock transfected
DAMI cells (A), DAMI cells transfected with pCMV-eGFP (note extensive eGFP fluorescence) (B) and DAMI cells transfected with pCMV-miGPIBA-2
+3-eGFP (C-D). Cells were stained for GPIbα (green), the actin cytoskeleton (red) and the nucleus (blue/purple). Scale bar is 25 μm. The width (W) and
length (L) of the cells along two perpendicular axes used to calculate cell aspect ratios are indicated in (C). (D) GPIbα expression in untransfected (white) or
pCMV-eGFP (black) or pCMV-miGPIBA-2+3-eGFP (purple) transfected DAMI cells was determined by flow cytometry. DAMI transfected cells were
stimulated with PMA for 48h as indicated. Data represent mean fluorescence intensities of GPIbα expression ± SEM (n>3). (E) Quantitative analysis showing
cell aspect ratios (W/L) represent mean ± SEM (n >3; 20 cells analyzed per condition). Statistical analysis was performed using the unpaired Student t test (*
p<0.05; *** p<0.01).

doi:10.1371/journal.pone.0132899.g004
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sequences could be inserted in the 3’ or 5’ of a reporter gene (eGFP), however observed that no
GFP fluorescence could be detected in either CHO GPIb-IX or DAMI cells transfected with
miGPIBA constructs regardless of the 3’ or 5’ position of the reporter gene (Figure A in S2
File). This is in agreement with the literature [25, 26] where the hairpin loop structure of miR-
NAs reduces the translation efficiency of the reporter gene. Indeed, since the initial phase of
our study, this loss of reporter expression has been circumvented by the addition of a chimeric
intron into the construct [24, 25, 31]. In addition, other scaffold for miRNA constructs such as
miR155, miR223 or miR451 have been used as well, the latter showing improved Ago2 specific-
ity and reducing risk of overwhelming the endogenous miRNA machinery [24, 31, 34].

Although in all single miRNA constructs tested the observed knockdown was much weaker
compared to the corresponding siRNAs, we could reach similar efficacies by inserting addi-
tional miRNA hairpins, thereby providing a certain level of control over the knockdown
obtained (Figs 1 and 2). This can be particularly useful when dealing with a highly expressed
target protein, such as the GPIb-V-IX complex in MK and platelets, where silencing using a
single miRNA might be ineffective because of the so-called dilution effect [35]. In order to
increase GPIbα knockdown, we initially inserted two identical miRNA hairpins in one plasmid,
a strategy successfully adopted in other cell types [26, 31, 36]. While no further reduction in
GPIbα expression could be achieved using two identical miRNA sequences, a combination of
two different miRNAs (pCMV-miGPIBA-2+3-eGFP) did result in increased GPIbα silencing
(Fig 2). These results partially confirm those of Amendola et al. who showed that a tandem
configuration of two completely identical miRNAs is unstable, in contrast to a configuration of
two different miRNAs [31]. However, in our case both miRNAs have an identical human
miR30 loop and flanking sequences and only differ in their targeting sequence, suggesting that
different targeting sequences might be sufficient to circumvent structural tandem (artificial)
miRNA instability.

In order to validate miRNA technology for functional studies, we sought to mimic the
effects of GPIbα deficiency on platelet aggregation by performing a CHO GPIb-IX cell aggrega-
tion assay which is dependent on the interaction between GPIbα and its main ligand VWF [18,
28]. Transfection of CHO GPIb-IX cells with pCMV-miGPIBA-2+3-eGFP significantly
reduced the number of aggregates formed (Fig 3E), as well as the aggregate size (Fig 3F), illus-
trating that miRNA technology can be successfully used for functional studies at the receptor-
ligand level.

To further demonstrate the potential of the miRNA-based approach for gene silencing dur-
ing megakaryopoiesis, the miGPIBA-2+3 cassettes were introduced into megakaryoblastic
DAMI cells to evaluate the effects of downregulating GPIbα on actin reorganisation during
PMA-induced differentiation. When GPIbα upregulation was blocked in differentiating DAMI
cells, we observed a different actin distribution with an elongated cell morphology represented
by a significantly reduced cell aspect ratio compared to mock- and eGFP-transfected control
conditions. This is in line with the role of GPIbα in actin reorganisation via the binding of its
intracellular tail domain to actin-binding proteins such as Filamin [37, 38]. Indeed, both mice
lacking Filamin A or GPIbα are unable to anchor the plasma membrane to the cytoskeleton
and have enlarged platelets [39–41].

In conclusion, we show that our miRNA-based approach is a powerful tool to successfully
silence a platelet gene and can also be used for functional studies. During the preparation of this
manuscript, few examples using miRNA backbone vectors have been applied to silence a platelet
gene in human HSPC with success [38, 42]. We therefore believe that this miRNA strategy
could be of great use in the characterisation of recently discovered platelet genes with unknown
function, thereby identifying potential new targets for the development of novel antithrombotics
but also for other applications such as engineering HLA-universal platelets [16].
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Supporting Information
S1 Fig. Transfection efficiencies of siRNA oligonucleotides in CHO GPIb-IX cells. Trans-
fection efficiencies assessed by % of CHO GPIb-IX cells expressing GFP ± SEM (n>3), 48h
post transfection with OligoBlock iT carried out in parallel with siGPIBA-1 (blue), siGPIBA-2
(green), siGPIBA-3 (red), siGPIBA-2+3 (purple) or siGPIBA-1+2+3 (black) transfections. Note
that the transfection efficiencies are not significantly different between the groups. Statistical
analysis was performed using Anova followed by Tukey’s post-test (p>0.05).
(TIF)

S2 Fig. Transfection of CHO GPIb-IX cells with pCMV-miGPIBA-2NS-eGFP does not
alter GPIbα expression. Representative flow cytometry histogram from CHO GPIb-IX control
cells (grey area) and cells transfected with pCMV-miGPIBA-2NS-eGFP (black line) expressing
GPIbα 48h post transfection. Negative control in which no anti-GPIbαmoAb 6B4 was added
is depicted by a black line with white area.
(TIF)

S1 File. Pre-amiR structures and plasmid constructs. (A) Predicted stem-loop hairpin struc-
tures for miGPIBA-2 and miGPIBA-3. Structures were predicted using RNA Structure software
V5.1. (http://rna.urmc.rochester.edu/RNAstructure.html) (B) Schematic representation of the
miRNA constructs tested. CMV: CMV promoter, eGFP: eGFP coding sequence, green hairpin:
miGPIBA-2, blue hairpin: miGPIBA-3 red hairpin miGPIBA-2NS, grey hairpin: miGPIBA-3NS.
(TIF)

S2 File. Transfection efficiencies of miRNA constructs in CHO GPIb-IX cells. (A) Flow
cytometric analysis representing mean fluorescence intensities (MF) ± SEM (n>3) of GFP
expression in CHO GPIb-IX cells transfected with pCMV-eGFP (black), pCMV-eGFP-miG-
PIBA-2 (hatched green), pCMV-miGPIBA-2-eGFP (green), pCMV-miGPIBA-2+2-eGFP
(orange), or pCMV-miGPIBA-2+3-eGFP (purple). Note high expression for pCMV-eGFP
transfected cells and loss of GFP expression for cells transfected with miRNA constructs. Statis-
tical analysis was performed using Anova followed by Dunnett’s post-test (�� p<0.01). (B)
Transfection efficiencies assessed by % of CHO GPIb-IX cells expressing GFP ± SEM (n>3),
48h post transfection with pCMV-eGFP carried out in parallel with pCMV-eGFP-miGPIBA-2
(hatched green), pCMV-miGPIBA-2-eGFP (green), pCMV-miGPIBA-2+2-eGFP (orange), or
pCMV-miGPIBA-2+3-eGFP (purple) transfections. Note that the transfection efficiencies are
not significantly different between the groups. Statistical analysis was performed using Anova
followed by Tukey’s post-test (p>0.05).
(TIF)

S3 File. Ristocetin induced VWF-dependent cell aggregation. CHO GPIb-IX cells were incu-
bated with ristocetin and VWF on a rotary shaker to induce aggregate formation. (A-C) Repre-
sentative pictures from 100% CHO GPIb-IX cells (A), 100% CHO β9 cells (B) and a mixture of
85% CHO GPIb-IX cells and 15% CHO β9 cells (C) are shown. Scale bar is 100μm. Quantita-
tive analysis was performed by measuring the number of aggregates (D) and the aggregate size
(a.u.: arbitrary units) (E). Data represent mean ± SEM (n = 6). Statistical analysis was per-
formed using the unpaired Student t test (��� p<0.001).
(TIF)
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