114 research outputs found

    A Novel Grid Connected Photovoltaic System

    Get PDF
    Inthispaper, a novel grid connected photovoltaic system is proposed which can function as an Active Power Filter (APF) with Maximum Power Point Tracking (MPPT). Filter reference current is derived using Fourier Transform. Considering 33% reduction in inverter switches, cost of the grid-connect photovoltaic power plant can be reduced considerably. Using this approach, it is also possible to compensate for reactive and harmonic components of the local loads; moreover it can inject generated active power into grid at maximum power point of the photovoltaic cells. According to this, during daytime, the proposed system injects active power to the grid and at the same time compensates for the reactive power of the load. When there is no sunlight, the inverter only compensates local loads. Considering cost reduction, such capabilities may result in more application of the grid connected photovoltaic systems. Main novelty of the proposed system is simultaneous APF and MPPT functioning using single DC/AC converter. In fact, extra DC-DC converter is not required in the proposed system for MPPT. In order to verify the performance of the proposed method, some simulation is done using MATLAB/Simulink software. Also, some experimental results are presented for practical verification of the proposed grid connected inverter

    Analysis of a Bidirectional DC-DC Converter with High Voltage Gain

    Get PDF
    A novel bidirectional DC-DC converter with high conversion ratio is proposed in this paper. The proposed converter uses the three windings coupled-inductor to achieved high voltage conversion ratio. The primary side consist of a winding and secondary side consist of two windings, which these two windings are series to achieved high voltage gain.In the boost mode, a capacitor is parallel charged and series discharged by the coupled inductor. Thus, high step-up voltage gain can be achieved with an appropriate duty ratio. In the buck mode, a capacitor is series charged and parallel discharged by the coupled inductor. The bidirectional converter can have high step-down voltage gain.The stress voltage of main switches can be reduced, and efficiency can be improved. The operating principle and the steady-state analyses of the voltage gain are discussed. Finally, in 24V for low voltage, and 400V for high voltage, and 200W for output power, this converter is simulated in MATLAB

    Analysis of a Bidirectional DC-DC Converter with High Voltage Gain

    Full text link
    A novel bidirectional DC-DC converter with high conversion ratio is proposed in this paper. The proposed converter uses the three windings coupled-inductor to achieved high voltage conversion ratio. The primary side consist of a winding and secondary side consist of two windings, which these two windings are series to achieved high voltage gain.In the boost mode, a capacitor is parallel charged and series discharged by the coupled inductor. Thus, high step-up voltage gain can be achieved with an appropriate duty ratio. In the buck mode, a capacitor is series charged and parallel discharged by the coupled inductor. The bidirectional converter can have high step-down voltage gain.The stress voltage of main switches can be reduced, and efficiency can be improved. The operating principle and the steady-state analyses of the voltage gain are discussed. Finally, in 24V for low voltage, and 400V for high voltage, and 200W for output power, this converter is simulated in MATLAB

    Thermal Unit Commitment Solution using Priority List Method and Genetic-Imperialist Competitive Algorithm

    Get PDF
    A novel strategy including a Priority List (PL) based method and a heuristic algorithm which is named Genetic-Imperialist Competitive Algorithm (GICA) has been proposed in this paper to solve thermal Unit Commitment Problem (UCP). This problem has been confined by some constraints like minimum down time, minimum up time, spinning reserve, load demand, and limited output power of the generating units. The optimization process is carried out in three steps. At first, a strategy based PL is used to find units priority, in second step the GICA employed to solve Economic Load Dispatch (ELD), and finally a correction strategy tried to find and replace better solutions. The accuracy and effectiveness of the proposed method is verified by two different case studies with 4 and 10 generation units system. The comparison of results with some other methods shows that proposed three step method has a better performance and achieve better solution in an admissible time interval

    Sliding Mode Input Current Control of the Synchronous DC-DC Buck Converter for Electro-Mechanical Actuator Emulation in More Electric Aircrafts

    Get PDF
    The main challenges of the input current control in synchronous DC-DC buck converters are the nonlinear model of the system, changes of the operating point in a wide range, and the need to use an input LC filter for current smoothing, which may result in the instability of the closed-loop system. In this paper, a step-by-step approach is developed for the design and improvement of a PI-feedforward closed-loop controller. It is shown that a linear PI controller cannot stabilize the closed-loop system properly during wide changes in model parameters, e.g., an equivalent series resistance of the input filter. To cope with the stability issues, a fixed-frequency sliding mode controller (SMC) has been developed in this paper for the implementation of an electro-mechanical actuator (EMA) emulator. Moreover, a systematic approach is proposed for controller tuning and the selection of the SMC’s gains. To achieve high power efficiency, high-frequency GaN switches are used for the practical implementation of the DC-DC converter. Despite large changes in the load current, the designed nonlinear controller can track the input current reference satisfactorily. Steady-state and dynamic responses of the proposed SMC are compared with conventional linear controllers. Considering the Lyapunov stability theorem, it is proved that the designed SMC can stabilize the closed-loop system in the entire utilizable domain. The proposed nonlinear SMC controller enjoys a very simple control law. Hence, despite having very high switching and sampling frequencies, it can be easily implemented. The experimental response of the designed synchronous DC-DC buck converter is evaluated experimentally by implementing the control strategy in a TMS320F28335PGFA DSP from Texas Instrument. Moreover, the comprehensive comparison of the proposed SMC controller and a PI-feedforward controller proved the superior performance of the developed closed-loop system, in terms of the transient time response, robustness, and stability of the EMA emulator

    Effect of support on power output of ethanol/O2 biofuel cell

    Get PDF
    Enzymatic biofuel cells have many great usages as a small power source for medical and environmental applications. In this paper, we employed carboxylated multiwall carbon nanotube- (1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide) ionic liquid nanocomposite on two different electrodes (glassy carbon and carbon felt) for immobilizing alcohol dehydrogenase. The properties of the two types of electrodes were characterized by cyclic voltammetry analysis. Polarization analysis and field emission scanning electron microscopy were used to show differences in the nanobiocomposite immobilization on two electrodes. Compared to glassy carbon, carbon felt achieved much more gains in electrochemical activity and power by catalyst coating. Power density of 10.027μWcm−2, has been achieved by carbon felt, but glassy carbon showed 1.7 μWcm−2 respectively
    • …
    corecore