298 research outputs found

    Characterization of aluminum powder ignition

    Get PDF
    Heating rate effect and particle size effect on ignition temperature of Al powder were studied to collect data for development of a possible Al powder ignition model. Aluminum ignition is associated with a highly accelerated burn rate and high combustion enthalpy. A new ignition model, which can adequately interpret these conditions, is needed to develop better propulsion fuels, explosives and incendiaries that use Al as an additive. This experimental program was focused on preparing framework for characterization of ignition kinetics of Al powder by determining the ignition temperature for different, systematically varied, heating rates and particle size. The experimental setup involved igniting Al powder coated on a small length of an electrically heated carbon filament. A three-color pyrometer and a high-speed camera were used in the project to determine the filament surface temperature at the instant of ignition. When using the pyrometer, a sharp rise in a photodiode signal from the powder coating was used to determine the ignition moment. The high-speed camera recorded both the temperature and the ignition moment. Two Al powders with different particle size (Alfa Aesar, Al 10 - 14 μm and Al 3 - 4.5 μm) were investigated. The powders were ignited at three different heating rates. A higher ignition temperature was observed for higher heating rate for both the powders. The powder with larger particles ignited at higher temperature for same heating rate

    Experiment and modeling : ignition of aluminum particles with a CO2 laser

    Get PDF
    Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1 -50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103 -104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 -0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was developed to describe the experiments. Experiments with different jet velocities in air environment were performed to validate the model. The interaction of the laser beam with particles is particle size dependent and a narrow range of particle sizes (around 3.4 µm) is heated most effectively. Therefore, the heat transfer model needs to be analyzed only for the particles with this specific size, which greatly simplifies the interpretation of experiments. Describing heating of a micron sized metal particle involves the transition regime heat transfer. A modified Fuchs model was used to describe the heat transfer in this study. In addition to dry air environment, the experimental technique was also used with other oxidizing environments, including O2, H2O, CO2 and mixtures thereof. It was observed that particle size capable of maintaining a vapor phase flame is a function of the environment. Arrhenius model kinetics parameters for Al ignition in O2, CO2 and H2O environments were determined

    Human protein reference database—2006 update

    Get PDF
    Human Protein Reference Database (HPRD) () was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein–protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein–protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data

    Abiraterone acetate plus prednisolone with or without enzalutamide for patients with metastatic prostate cancer starting androgen deprivation therapy: final results from two randomised phase 3 trials of the STAMPEDE platform protocol

    Get PDF
    Background: Abiraterone acetate plus prednisolone (herein referred to as abiraterone) or enzalutamide added at the start of androgen deprivation therapy improves outcomes for patients with metastatic prostate cancer. Here, we aimed to evaluate long-term outcomes and test whether combining enzalutamide with abiraterone and androgen deprivation therapy improves survival. Methods: We analysed two open-label, randomised, controlled, phase 3 trials of the STAMPEDE platform protocol, with no overlapping controls, conducted at 117 sites in the UK and Switzerland. Eligible patients (no age restriction) had metastatic, histologically-confirmed prostate adenocarcinoma; a WHO performance status of 0–2; and adequate haematological, renal, and liver function. Patients were randomly assigned (1:1) using a computerised algorithm and a minimisation technique to either standard of care (androgen deprivation therapy; docetaxel 75 mg/m2 intravenously for six cycles with prednisolone 10 mg orally once per day allowed from Dec 17, 2015) or standard of care plus abiraterone acetate 1000 mg and prednisolone 5 mg (in the abiraterone trial) orally or abiraterone acetate and prednisolone plus enzalutamide 160 mg orally once a day (in the abiraterone and enzalutamide trial). Patients were stratified by centre, age, WHO performance status, type of androgen deprivation therapy, use of aspirin or non-steroidal anti-inflammatory drugs, pelvic nodal status, planned radiotherapy, and planned docetaxel use. The primary outcome was overall survival assessed in the intention-to-treat population. Safety was assessed in all patients who started treatment. A fixed-effects meta-analysis of individual patient data was used to compare differences in survival between the two trials. STAMPEDE is registered with ClinicalTrials.gov (NCT00268476) and ISRCTN (ISRCTN78818544). Findings: Between Nov 15, 2011, and Jan 17, 2014, 1003 patients were randomly assigned to standard of care (n=502) or standard of care plus abiraterone (n=501) in the abiraterone trial. Between July 29, 2014, and March 31, 2016, 916 patients were randomly assigned to standard of care (n=454) or standard of care plus abiraterone and enzalutamide (n=462) in the abiraterone and enzalutamide trial. Median follow-up was 96 months (IQR 86–107) in the abiraterone trial and 72 months (61–74) in the abiraterone and enzalutamide trial. In the abiraterone trial, median overall survival was 76·6 months (95% CI 67·8–86·9) in the abiraterone group versus 45·7 months (41·6–52·0) in the standard of care group (hazard ratio [HR] 0·62 [95% CI 0·53–0·73]; p<0·0001). In the abiraterone and enzalutamide trial, median overall survival was 73·1 months (61·9–81·3) in the abiraterone and enzalutamide group versus 51·8 months (45·3–59·0) in the standard of care group (HR 0·65 [0·55–0·77]; p<0·0001). We found no difference in the treatment effect between these two trials (interaction HR 1·05 [0·83–1·32]; pinteraction=0·71) or between-trial heterogeneity (I2 p=0·70). In the first 5 years of treatment, grade 3–5 toxic effects were higher when abiraterone was added to standard of care (271 [54%] of 498 vs 192 [38%] of 502 with standard of care) and the highest toxic effects were seen when abiraterone and enzalutamide were added to standard of care (302 [68%] of 445 vs 204 [45%] of 454 with standard of care). Cardiac causes were the most common cause of death due to adverse events (five [1%] with standard of care plus abiraterone and enzalutamide [two attributed to treatment] and one (<1%) with standard of care in the abiraterone trial). Interpretation: Enzalutamide and abiraterone should not be combined for patients with prostate cancer starting long-term androgen deprivation therapy. Clinically important improvements in survival from addition of abiraterone to androgen deprivation therapy are maintained for longer than 7 years. Funding: Cancer Research UK, UK Medical Research Council, Swiss Group for Clinical Cancer Research, Janssen, and Astellas

    Effect of heat and plasma treatments on the electrical and optical properties of colloidal indium tin oxide films

    Get PDF
    The research presented in this dissertation explores the possibility of using colloidal indium tin oxide (ITO) nanoparticle solutions to direct write transparent conducting coatings (TCCs), as an alternative route for TCC fabrication. ITO nanoparticles with narrow size distribution of 5-7 nm were synthesized using a non-aqueous synthesis technique, and fabricated into films using spin coating on substrates made from glass and fused quartz. The as-coated films were very transparent (>95% transmittance), but highly resistive, with sheet resistances around 10¹³ Ω/sq . Pre-annealing plasma treatments were investigated in order to improve the electrical properties while avoiding high temperature treatments. Composite RIE treatment recipes consisting of alternating RIE treatments in O₂ plasma and in Ar plasma were able to reduce the sheet resistance of as spin coated ITO films by 4-5 orders of magnitude, from about 10¹³ Ω/sq in as-coated films to about 3 x 10⁸ Ω/sq without any annealing. Plasma treatment, in combination with annealing treatments were able to decrease the sheet resistance by 8-9 orders of magnitude down to almost 10 kΩ/sq , equivalent to bulk resistivity of ~0.67 Ω.cm. Investigation into effectiveness of various RIE parameters in removing residual organics and in reducing the sheet resistance of colloidal ITO films suggested that while reactive ion annealing (RIE) pressure is an important parameter; parameters like plasma power, number of alternating O₂-Ar RIE cycles were also effective in reducing the residual organic content. Impedance spectroscopy analysis of the colloidal ITO films indicated the dominance of the various interfaces, such as grain boundaries, insulating secondary phases, charge traps, and others in determining the observed electrical properties.Ph.D

    Modified Quasi-Opposition-Based Grey Wolf Optimization for Mathematical and Electrical Benchmark Problems

    No full text
    This paper proposes a modified quasi-opposition-based grey wolf optimization (mQOGWO) method to solve complex constrained optimization problems. The effectiveness of mQOGWO is examined on (i) 23 mathematical benchmark functions with different dimensions and (ii) four practical complex constrained electrical problems that include economic dispatch of 15, 40, and 140 power generating units and a microgrid problem with different energy sources. The obtained results are compared with the reported results using other methods available in the literature. Considering the solution quality of all test cases, the proposed technique seems to be a promising alternative for solving complex constrained optimization problems

    Echo-ID: Smart user identification leveraging inaudible sound signals

    Full text link
    In this article, we present a novel user identification mechanism for smart spaces called Echo-ID (referred to as E-ID). Our solution relies on inaudible sound signals for capturing the user’s behavioral tapping/typing characteristics while s/he types the PIN on a PIN-PAD, and uses them to identify the corresponding user from a set of N enrolled inhabitants. E-ID proposes an all-inclusive pipeline that generates and transmits appropriate sound signals, and extracts a user-specific imprint from the recorded signals (E-Sign). For accurate identification of the corresponding user given an E-Sign sample, E-ID makes use of deep-learning (i.e., CNN for feature extraction) and SVM classifier (for making the identification decision). We implemented a proof of the concept of E-ID by leveraging the commodity speaker and microphone. Our evaluations revealed that E-ID can identify the users with an average accuracy of 93% to 78% from an enrolled group of 2-5 subjects, respectively

    Outcomes of coronary artery bypass grafting in patients with heart failure with a midrange ejection fraction

    No full text
    Background: Coronary artery bypass grafting (CABG) improves survival in patients with heart failure and severely reduced left ventricular systolic function (LVEF). Limited data exist regarding adverse cardiovascular event rates after CABG in patients with heart failure with midrange ejection fraction (HFmrEF; LVEF > 40% and < 55%). Methods: We analyzed data on isolated CABG patients from the Veterans Affairs national database (2010-2019). We stratified patients into control (normal LVEF and no heart failure), HFmrEF, and heart failure with reduced LVEF (HFrEF) groups. We compared all-cause mortality and heart failure hospitalization rates between groups with a Cox model and recurrent events analysis, respectively. Results: In 6533 veterans, HFmrEF and HFrEF was present in 1715 (26.3%) and 566 (8.6%) respectively; the control group had 4252 (65.1%) patients. HFrEF patients were more likely to have diabetes mellitus (59%), insulin therapy (36%), and previous myocardial infarction (31%). Anemia was more prevalent in patients with HFrEF (49%) as was a lower serum albumin (mean, 3.6 mg/dL). Compared with the control group, a higher risk of death was observed in the HFmrEF (hazard ratio [HR], 1.3 [1.2-1.5)] and HFrEF (HR, 1.5 [1.2-1.7]) groups. HFmrEF patients had the higher risk of myocardial infarction (subdistribution HR, 1.2 [1-1.6]; P = .04). Risk of heart failure hospitalization was higher in patients with HFmrEF (HR, 4.1 [3.5-4.7]) and patients with HFrEF (HR, 7.2 [6.2-8.5]). Conclusions: Heart failure with midrange ejection fraction negatively affects survival after CABG. These patients also experience higher rates myocardial infarction and heart failure hospitalization
    corecore