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ABSTRACT

EXPERIMENT AND MODELING: IGNITION OF ALUMINUM PARTICLES
WITH A CO2 LASER

by
Salil Mohan

Aluminum is a promising ingredient for high energy density compositions used in

propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives

enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore,

to develop aluminum based novel and customized high density energetic materials,

understanding of ignition and combustion kinetics of aluminum powders is required. In

most practical systems, metal ignition and combustion occur in environments with

rapidly changing temperatures and gas compositions. The kinetics of exothermic

reactions in related energetic materials is commonly characterized by thermal analysis,

where the heating rates are very low, on the order of 1 — 50 K/min. The extrapolation of

the identified kinetics to the high heating rates is difficult and requires direct

experimental verification. This difficulty led to development of new experimental

approaches to directly characterize ignition kinetics for the heating rates in the range of

103 — 104 K/s. However, the practically interesting heating rates of 10 6 K/s range have not

been achieved.

This work is directed at development of an experimental technique and respective

heat transfer model for studying ignition of aluminum and other micron-sized metallic

particles at heating rates varied around 106 K/s. The experimental setup uses a focused

CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum

particles into the laser beam. The setup allows using different environment for particle



aerosolization. The velocities of particles in the jet are in the range of 0.1 —0 3 m/s. For

each selected jet velocity, the laser power is increased until the particles are observed to

ignite. The ignition is detected optically using a digital camera and a photomultiplier. The

ignition thresholds for spherical aluminum powder were measured at three different

particle jet velocities, in air environment. A single particle heat transfer model was

developed to describe the experiments. Experiments with different jet velocities in air

environment were performed to validate the model.

The interaction of the laser beam with particles is particle size dependent and a

narrow range of particle sizes (around 3.4 µm) is heated most effectively. Therefore, the

heat transfer model needs to be analyzed only for the particles with this specific size,

which greatly simplifies the interpretation of experiments. Describing heating of a micron

sized metal particle involves the transition regime heat transfer. A modified Fuchs model

was used to describe the heat transfer in this study.

In addition to dry air environment, the experimental technique was also used with

other oxidizing environments, including O2, H2O, CO2 and mixtures thereof. It was

observed that particle size capable of maintaining a vapor phase flame is a function of the

environment. Arrhenius model kinetics parameters for Al ignition in O2, CO2 and H 2O

environments were determined.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Problem Statement

Reactive metals and metalloids, e.g., Al, B, Mg, Zr, Ti, Li, etc., as well as their alloys are

promising ingredients for high energy density compositions used in propulsion systems,

explosives, and pyrotechnics. Metallic powder fuel additives enable one to achieve higher

combustion enthalpies and reaction temperatures. In most practical systems, metal

ignition and combustion occur in environments with rapidly changing temperatures and

gas compositions.

On the other hand, most of the available quantitative characteristics describing

ignition and combustion of metal particles were obtained from laboratory experiments in

which the environment temperature and composition were carefully maintained. Thus,

ignition of metallic particles has been often characterized by a specific ignition

temperature, e.g., [1, 2] typically, corresponding to a specific experimental situation.

Ignition is also commonly assumed to occur after a delay, which is estimated as the time

required for preheating the particle up to its ignition temperature.

Classically, the ignition temperature is understood in terms of the Semenov

thermal theory as the minimum environment temperature which leads to self-sustaining

combustion of an inserted particle [3, 4]. This definition has been successfully used for

applications where the heating rates are characteristically low, e.g., dealing with fire

safety and ignition of solid fuels in large furnaces [5, 6]. However, it becomes

inadequate for applications in which the particles are heated rapidly, when the particle's

temperature can exceed the classically defined ignition temperature before the self-

1
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sustaining combustion is established. Furthermore, the whole concept of ignition

temperature appears inadequate considering the nature of heterogeneous oxidation

leading to ignition of most metals. For example, for aluminum, the thermally accelerated

heterogeneous oxidation producing the heat necessary for a self-sustaining combustion

also accelerates the growth of a protective oxide layer, which could prevent the

combustion from occurring. This situation is typical for metal particle ignition in

explosives, propellants and pyrotechnics.

Thus, to describe ignition for such applications, it is necessary to analyze specific

transient heat transfer problems in which one or more of the exothermic processes

leading to the particle ignition are considered. Such analyses require quantitative

descriptions of these, typically thermally controlled, exothermic processes balanced by

the conventional heat transfer terms of convection and radiation. The kinetics of

exothermic reactions in related energetic materials is commonly characterized by thermal

analysis, where the heating rates are very low, on the order of 1 — 50 K/min. The

extrapolation of the identified kinetics to the high heating rates is difficult and requires

direct experimental verification. This difficulty led to development of new experimental

approaches to directly characterize ignition kinetics for the heating rates in the range of

103 — 104 K/s [7, 8]. However, the practically interesting heating rates of 10 6 K/s have

not been achieved. Also, there is a critical difficulty in the interpretation of all the

experimental data dealing with ignition of metal powders, which is caused by the

presence of particles of different sizes. The heating rates are different for particles of

different sizes, and so must be the rates of the thermally controlled processes leading to

ignition. Therefore, interpretation of the experimental data obtained with regular, poly-
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dispersed metal powders is difficult while experiments with highly mono-dispersed

particles are impractical.

This work presents a new experimental technique and the corresponding heat

transfer model that enables one to quantify ignition kinetics for reactive particles heated

at varied heating rates approaching to or exceeding 10 6 K/s. Aluminum, the most

common reactive metal additive is used in this study. Many different approaches to

describe aluminum ignition have been presented in literature. This chapter presents a

brief experimental and theoretical background on aluminum ignition.

Efforts to characterize aluminum ignition till now have produced results that are

inconsistent between them and often are contradictory. Figure 1.1 plots the published data

on aluminum particle size and ignition temperature.

Figure 1.1 Summary of experimental results on aluminum ignition, [9-19].
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Temperatures as low as 850 K and as high as 2300 K have been reported as

aluminum ignition temperatures by different authors [9-19]. The reported ignition

temperatures appear to correlate with the sample sizes [20]. The discrepancies between

the points reported by different authors may be attributed to different experimental

methods employed, which resulted in different conditions, such as heating rates and

surrounding gas compositions. Also, different definitions of ignition moment used by

different authors could have led to variations in the reported values of ignition

temperatures.

1.2 Experimental Studies of Aluminum Ignition

Various experimental investigations focused on characterizing aluminum ignition have

been reported in the literature [9-24]. Some characteristic examples of experimental

techniques illustrating aluminum ignition in different heating regimes are described

below.

1.2.1 Thermal Analysis

Thermogravimetry Analysis (TGA) and Differential Scanning Calorimetry (DSC)

techniques are widely used in characterizing energetic materials [21, 22, 23] in a typical

range of heating rates of 1 — 50 K/min. These rates are ideally suited for studying the

heterogeneous oxidation kinetics of energetic materials but do not allow to directly

characterize ignition and combustion of such materials. Recently published work [24-27]

on aluminum oxidation using TGA technique indicates a stepwise process. Figure 1.2

from Ref. [24] illustrates a typical TGA trace showing the stepwise oxidation and

associated weight increase. In the model proposed based on the TGA experiments [24],
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the kinetic description for each observed oxidation step was proposed. The steps were 

prescribed to oxidation of different alumina polymorphs and to phase changes between 

such polymorphs. Assuming the ignition kinetics parameters and mechanisms derived 

from TGA experiments remain valid at higher heating rates, the ignition models can be 

developed used for practical applications. 

115 

~ 0 110 
Ch 

~ 
.~ 105 . 

t02 

101 

100 

';00 

I' tH'1) nUj·~ ~~~{~I!If\g 
, 

600 800 

!)"C!nWl 
10 

20 
40 " 

100 -40 +325 mesh powder 

300 600 900 

Temperature. oC 

1200 1500 

Figure 1.2 TGA technique showing mass increase of Al powder [24]. Stepwise weight 
increase indicates stepwise oxidation. 

1.2.2 Wire Ignition Experiments 

Ignition of pure Al is reported in literature [28-30] by heating Al wire electrically in a 

controlled gas environment. The reported heating rates with this technique are in the 

range of 102 
- 103 Kls. Ignition temperature for Al wire of 30 - 50 /-!m diameter wire in 

pure oxygen is reported to be in the range of 1900 - 2300 K [30]. The requirement to use 

a wire as the material sample is a limitation of this technique. A variant of this method 

was used recently to characterize energetic materials [7, 31]. Aluminum wire was 

replaced by a wire of a higher refractory alloy which was coated by a thin layer of a metal 

powder being investigated. Heating rates up to 105 Kls are reported. Figure 1.3 shows a 

schematic of the experimental setup used in this technique. Temperature is measured on 
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Figure 1.3 Sch~matic diagram of the experimental apparatus for powder ignition using 
an electrically heated filament [31]. 
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the wire surface next to the coated powder and the powder ignition is detected optically. 

Ignition temperature measured is used to characterize the material. This method works 

well for materials with relatively low ignition temperatures. For aluminum, the metal 

wire was replaced by a carbon filament [31]. Ignition temperatures for 10 - 14 /lm 

aluminum powder in air were reported to be in the range of 1750 - 1950 K [31], 

depending on the heating rates. 

1.2.3 Shock Tube Experiments 

Shock tube is a widely used and well studied tool for ignition of energetic materials in 

aerosol as well as gaseous state [32-36] . Experimental studies for ignition and 

combustion of aluminum powder in different environments were reported [35, 36]. This 

technique involves igniting the powder by a high temperature gas generated by a 

reflected shock wave at the end of a long steel tube. Upon passing the reflected shock, the 
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Figure 1.4 Shock-tube conditions: (a) before firing of the tube; (b) after firing, but before 
shock-wave reflection; and (c) after shock-wave reflection from end wall [35]. 

environment with temperature of the order of2000 - 3500 K and pressures around 40 atm 

can be achieved [35]. Figure 1.4 from Ref. [35] illustrates the pressure regimes before, 

during and after the firing of the shock. The gas temperature rise can be achieved within 

half a millisecond and ignition of the particles can be diagnosed optically. Measured 

ignition delays and peak temperature ofthe particles were reported [35, 36]. However, 

assigning ignition temperature and ignition kinetics to a single particle in a shock tube 

experiments is difficult because the optical signal is captured from a particle cloud. In 

spite of this limitation very high heating rates ofthe order of 106 Kls are achievable. 

1.3 Aluminum Ignition Models 

A fixed ignition temperature is the most simple and straightforward model and it has 

produced satisfactory results for larger sized particle [24]. Particle ignition temperatures 
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are typically assumed in the vicinity of alumina melting point. In spite of some success

with larger particle size this model does not explain the aluminum igniting over a wide

range of temperatures, as shown in Figure 1.1. Two popular modeling approaches for

ignition of aluminum particle are described below.

1.3.1 Oxide Shell Rapture Model

Aluminum particles are known to be coated with amorphous alumina layer [21]. The

oxide shell rapture model takes into account the stresses in the alumina layer as a result of

change in the volume of the aluminum metal core. This theory has been extensively

discussed in literature [37-40]. It predicts ignition of the particle due to exposure of pure

aluminum surface to the surrounding oxidizer through cracks in the protective amorphous

alumina layer [39]. More recently, behavior of the alumina coating has been analyzed in

the literature [41] and pressure build up in the core of the particle is predicted to be

significant for smaller nano-aluminum particles. For all particle sizes, the pressure peaks

near the melting point of Aluminum. Concepts of oxide shell spallation followed by

pressure wave developing in the particles were discussed in Ref. [41]. This latter model is

suggested to work at very high heating rates. Currently, no experimental support has been

available for such models and the predictions are inconsistent with the reported thermal

analysis experiments.

1.3.2 Polymorphic Phase Transformation Model

The alumina polymorphic phase transformation model [24-27] accounts for changes in

the phase of alumina coating on the particle while the particle is heated. It describes the

growth of oxide films along with transformation of different polymorphs and takes into
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account different activation energies for diffusion in different aluminum polymorphs and

for phase change between those polymorphs. This model calculates the rate of oxidation

that is limited by the rate of transport of oxygen or aluminum through the protective

surface oxide layer. It has been reported that aluminum powders are coated with a 2.5-

nm thick layer of amorphous alumina [42-45] which was the assumed initial oxide

coating in the model. As the particle temperature increases, different polymorphs of

Al2O3 become stable [24, 46] and the model considers kinetics of respective polymorphic

phase transitions. The common route of phase transformations in alumina film grown on

aluminum surface by thermal oxidation has been established in Ref [46] as: amorphous

film -› -› a -Al2O 3

In addition to different kinetics, the densities of these alumina polymorphs are

also different from one another, as shown in Table 1.1 [24]. The transformations

accompanied by significant increase in density of alumina, such as amorphous to γ-

alumina and 7- to α alumina can also be accompanied by disruptions in continuity of the

protective oxide. Thus, the oxidation rates and respective heat release rates are predicted

to increase rapidly when such phase changes occur. Further details of the oxidation
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model for aluminum particles are available in [27]. The validation of this model for

aluminum ignition in air and its development for different oxidizing environments are the

primary motivations of this research.



CHAPTER 2

EXPERIMENTAL SETUP AND DATA ANALYSIS

2.1 Introduction

The objective of this experimental effort is to study the heating and ignition of individual

metal particles at heating rates in the range of 10 6 K/s. The technique should enable

effective heating of particles only in a narrow range of sizes leading to the ignition of

these narrowly selected particles.

The experimental setup uses a CO2 laser for heating micron-sized particles in an

oxidizing environment. Because the laser's wavelength (10.6 µm) and particle diameters

are comparable, the efficiency of the particle heating by the laser beam is highly

dependent on particle sizes [47]. At the threshold laser power, only particles with a very

narrow range of sizes (around 3.4 µm) are heated efficiently and ignited. Thus, one

needs to analyze the transient heat transfer only for the particles of this specific size, even

though readily available poly-disperse powders are used in experiments. To ignite the

particles, a laminar aerosol jet is fed into a focused CO2 laser beam. The laser power is

increased until the ignition is observed. A separate visible laser sheet is used to

illuminate the particles in the jet for velocimetry. The particle speed could be readily

controlled in the range of 0.1 - 3 m/s which enables experiments with varied heating

rates. The experiment is conducted in an oxidizing environment, so that if the laser power

exceeds a specific threshold, the heated particles of 3.4 diameter start igniting when

they cross the laser beam.

A detailed heat transfer model is developed, taking into account heating of metal

particles in the laser beam, thermally controlled heterogeneous exothermic reactions

11
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leading to ignition, convection, and radiation terms. The model needs to consider only

the specified above particle diameter, while experiments are conducted with a

commercial poly-dispersed Al powder. The model includes one adjustable parameter that

is the effective diameter of the focused laser beam. Specifically, it is the standard

deviation for the Gaussian function describing the energy distribution across the laser

beam. Note that the laser beam diameter is approximately determined from experiments

as well, whereas an accurate measurement of the focused CO2 laser beam diameter is

difficult because of the thermal interaction of the beam and any target placed in its focal

point. In addition, interference effects become substantial and contribute to the

experimental error. Instead, an experimentally determined laser power ignition threshold

obtained for spherical Al particles, for which the kinetics of exothermic reactions leading

to ignition has been recently described [24-27] is used to determine the adjustable

parameter (that is close to the measured value) and thus to calibrate the model.

2.2 Materials

Aluminum powder was used in the study: spherical Al, average particle size of 4.5 — 7

um, 99% pure by Alfa Aesar.

2.3 Experimental Setup

The experimental setup is shown in Figure 2.1 and includes an aerosol jet generator, 125

W CO2 laser (Synrad, Evolution 125) with a ZnSe convex lens (0.75" aperture and 4"

focal length), and a modulated green laser (SUWTECH model DPGL-3000 by Photop

Technologies, Inc) operated with a set of a semi-cylindrical and convex glass lenses to
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Figure 2.1 Schematic diagram of the experimental setup for studying particle ignition in
a CO2 laser beam.

produce a laser sheet for the jet visualization. Also, not shown in the Figure 2.1 but

employed in the experiments were a digital camera (Panasonic GS-35), used to obtain

particle streaks, and a photomultiplier tube (PMT) used to identify events of particle

ignition. In addition, a power meter (Synrad, POWER WIZARD 250), was used to

measure the laser beam energy and verify the accuracy of the pre-set laser power.

2.3.1 CO2 Laser Operation

The experiment used the CO2 laser to heat metal particles carried by oxidizing gas. The

laser was operated by UC-2000 laser controller with a control gate voltage of 3 V for

switching the laser. The typical beam output specifications given by the manufacturer are

shown in Table 2.1.



Table 2.1 Manufacture's Output Parameter Specifications for CO2 Laser
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The laser power depends on both percentage output setting and modulation

frequency, so a power meter with a resolution of + 0.1 W was used to measure the output

power. The laser power meter was placed in front of the CO2 laser beam after the ZnSe

focusing lens. It was placed for few seconds in front of the beam and an audible beep

indicated the completion of the measuring cycle. The power was measured for each

experimental run.

A ZnSe lens (Laser Mech, PLLPZ0063) with anti-reflection coatings and focal

length of 4.0 in (for 10.6 um wavelength) was used to focus the 4.4 mm CO2 laser beam

at the aerosol jet. A red laser diode (630 — 680 nm), collinear with the CO 2 laser beam,

was used for alignment of the CO 2 laser beam. Because refractive index is a function of

wavelength, the ZnSe lens has different focal length for the CO2 laser beam and for the

red laser used for alignment. In initial experiments in dry air, the particle jet was located

at the focal point of the red laser (Chapter 4) while in following experiments (Chapter 5)

the jet was positioned 4.0 in from the center of the ZnSe lens, in the nominal focal spot
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for the CO2 laser beam. The latter procedure gave a tighter focal spot, as discussed in

Chapter 5.

A small tin vessel with thin walls filled with water was used for dumping the

energy from the CO2 beam after it crossed the particle jet. Liquid water is a very effective

absorber of infrared radiation and has high specific heat, so that the water filled vessel

absorbing the surplus of the CO2 laser energy was not heated noticeably. Thus, the CO2

beam target was an effective energy absorber, which did not emit any visible radiation

that could interfere with the optical diagnostics used in the experiment.

In initial experiments in dry air, a CO2 beam guide was used to deliver the beam

to the ZnSe lens. The beam guide used two mirrors for two 90 ° bends. Due to the heating

of the mirror optics used in the beam guide, the CO2 laser beam could occasionally

misalign from the positioning red laser at higher laser power. The setup was later

modified to directly deliver the CO2 laser beam to the ZnSe lens without the use of any

additional reflectors.

2.3.2 Electrostatic Powder Aerosolizer

The aerosol jet generator uses electrostatic aerosolization described elsewhere [48]. In

this technique, a conductive (e.g., metal) powder is placed between the electrodes of a

parallel plate capacitor. Figure 2.2 shows the schematic of the parallel plate electrostatic

aerosolizer placed into a sealed, cylindrically shaped chamber (100 mm dia. and 60 mm

height) with non-conducting side walls. The positive electrode has a plano-concave

circular profile. Metallic powder is placed in the concave pit. The concave shape

produces higher electric fields at the perimeter, preventing the powder from escaping

from the capacitor.
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Figure 2.2 Schematic diagram of the parallel plate aerosolizer. 

The top wall (cover) ofthe cylindrical chamber is made out of two parallel copper 

disks with the lower disk serving as the negative electrode. The two disks are separated 

by a 6.71 rom spacer with an o-ring seal. Both disks have circular openings (lower disk: 

0.63 rom, upper disk 6.23 rom diameter) at the center for the escape of aerosol jet, as 

shown in Figure 2.2. A high DC voltage in the range of 1-15 kV is applied across the 

electrodes and the metallic particles acquire electric charge. The charged particles are 

repelled from the bottom electrode and attracted to the top electrode, at which they re-

charge upon collision. The motion of the charging and re-charging particles continues so 

that an aerosol is produced in the space between the capacitor's electrodes. A small gas 

flow of the order of 100 ml/min, measured by a gas flow meter (M-200SCCM-D by 

Alicat Scientific Inc.), is fed into the chamber. The flow exits from the hole in the lower 

disk of the negative electrode carrying aerosolized particles and thus generating a fine jet 

of particles. Because of the multiple collisions of the charged particles with electrodes, 
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particle agglomerates are broken and the resulting jet contains single particles only, as

was confirmed elsewhere [49]. A second gas flow of the order of 100 ml/min, measured

by a gas flow meter (M-200SCCM-D by Alicat Scientific Inc.), is fed into the space

between the two disks on the top of the chamber, creating a shroud flow around the fine

jet coming out of the lower disk. The shroud flow was found to enhance the jet's stability

[48] and helps separating the environment in the jet from the surrounding.

The DC voltage applied to the electrodes can be used to control the particle

number density in the produced aerosol. In this project, the number density of the

produced aerosol was restricted so that the number of particles fed into laser beam was of

the order of 1000 per second. The air flow fed into the aerosolizer chamber was used to

adjust the speed of the escaping aerosol jet. The speed could be readily controlled in the

range of 0.1 - 3 m/s.

2.3.3 Particle Jet Velocimetry

The aerosol jet was illuminated by a vertical laser sheet created by a green laser (532 nm,

SUWTECH model DPGL-3000 by Photop Technologies, Inc). A combination of a

convex and semi-cylindrical lens was used to produce a green vertical laser sheet. To

enable particle image velocimetry, the laser sheet was modulated at 300 - 3000 Hz,

depending on the jet speed. Produced particle streaks were recorded using a digital

camera (Panasonic GS-35) and the streak lengths were measured to determine the jet

velocity. Figure 2.3 shows a particle in the jet in air at 0.57 m/s with the green laser

modulated at 500 Hz. For each velocity measurement at least a total of 30 streaks were

measured from different frames and the standard deviation was used as the error bar for

the found average particle velocity.
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Figure 2.3 Particle streak recorded for a jet at 0.57 mls illuminated by a green laser sheet 
modulated at 500 Hz. 

2.3.4 Laser Spot Diameter 

In a separate measurement, the effective diameter of the focused laser beam was 

evaluated. Because the laser energy is distributed across the beam according to a 

Gaussian profile [50], the laser beam diameter is poorly defined. However, 

experimentally this diameter was roughly assessed by firing the laser on a ceramic 

surface and measuring the diameter of the produc'ed impression. For these measurements, 

the ceramic surface was placed in the focal spot of the red laser, so that the laser beam 

was somewhat defocused, as described in section 2.3.1. 

Figure 2.4 shows magnified images of the impressions obtained at 12.5 W, 25 W 

and 62.5 W laser powers with exposure time of 90 ms, 15 ms and 3 ms respectively. 
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Figure 2.4 CO2 laser beam impressions on a ceramic plate obtained at different laser
power levels. The impressions are painted over with a dark marker to improve contrast.
The laser powers and exposure times are shown for each impression.

Minimum exposure times required to obtain an impression were used for each laser

power setting. The sizes of the external and internal circles observed on the obtained

impressions did not change as a function of the laser power and could indicate the

diameters of the zone of thermal influence and of the laser beam, respectively. The

diameter of the inner circle was measured to be close to 330 pm. This size was

considered as an initial approximation for the beam diameter. As described later, the

width of the Gaussian distribution of the laser beam energy profile was used as an

adjustable parameter in the developed heat transfer model. The measurement using the

laser beam impressions served as a guide for the reasonable range, in which the

adjustable parameter could vary.

2.3.5 Photo-multiplier Tube (PMT)

A 10.5 mm diameter PMT assembly by Hamamatsu, H3164-01, with detection range 300

to 650 nm was used to detect ignition and/or heating of the metal particles. The PMT was

powered by a power supply C4710-01 by Hamamatsu. One of the four branches of a

quadrifurcated optical cable (Spectra-Physics) was used to carry the signal to the PMT.
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2.4 Experimental Procedure and Data Analysis

The CO2 laser was focused about 1.5 cm above the jet nozzle using an auxiliary red laser

aligned with the CO2 laser beam and the ZnSe lens. Once a stable aerosol jet was

established, the CO2 laser was fired continuously for 8 seconds, at a preset power level.

The visible radiation, generated by heating and/or ignition of particles, was monitored

using a photomultiplier connected to a PC-based data acquisition system. The streaks of

heated particles were also visualized by a digital camera operated with a shutter open for

the entire duration of the laser firing, as shown in Figure 2.5. The experiment was

repeated with gradually increased laser powers until ignition was clearly observed. The

peaks recorded by the PMT were analyzed to determine the minimum laser power needed

for ignition for each specific aerosol jet velocity.

The images recoded by the digital camera showed short and bright streaks of particles

crossing the laser beam. However, discrimination between the streaks produced by

luminous particles that did not ignite and those that ignited and burned was ambiguous.

Thus, using the PMT with a temporal resolution of 20 was necessary for clear

identification of the ignition events. Typical examples of PMT peaks produced by

different particles crossing the laser beam are shown in Figure 2.6. Figure 2.6 (a) shows a

peak produced by a particle that ignited and burned. A sharp voltage rise is followed by

small changes in the radiation signal occurring during the particle combustion. On the

other hand, the peak shown in Figure 2.6 (b) shows the heating and cooling of the particle

that never ignited, and the voltage rise is immediately followed by the voltage decrease as

the particle exits from the beam. The minimum ignition threshold was established when
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Figure 2.5 Al particle ignition and/or heating streaks captured by still camera with an 8s
exposure. The aerosol jet velocity is 2.4 m/s and the laser power is 37.7 W.

0 	 5 	 10 	 15
Time (ms)

Figure 2.6 PMT signal from micron size Al particles crossing the CO2 laser beam. The
aerosol jet velocity is 2.4 m/s and the laser power is 37.7 W: (a) Signal corresponding to
ignition and combustion of a particle; (b) Signal corresponding to heating and cooling of
an unignited particle.
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at least one ignition event was detected during an 8-s period the laser was fired. The 8-s

experiments were performed at least three times for each laser power setting.

The experiments were performed for three different particle velocities for any

environment, so that the igniting particles were heated at three different rates. Both the

jet velocity and the laser power measurements were repeated immediately before and

after each ignition experiment.

2.5 Experimental Setup for Superheated Steam Environment

The setup was modified for igniting metal particles in a superheated steam environment.

The modification involved connecting a steam generator and a heated delivery system to

the aerosolizer. The generator produced a mixture of superheated steam and nitrogen gas

at 423 K (150 °C) which was fed between the two disks comprising the top wall of the

particle aerosolizer chamber, to come out as the shroud gas jet. Nitrogen was used as the

central jet gas for carrying metal particles, as shown in Figure 2.7. A heated delivery

system included a heated steam hose and a spiral coil heater for the top electrode of the

aerosolizer. Heated path enclosure needed for the shroud flow gas channel to avoid any

condensation.

It should be noted that in initial experiments, argon flow for the central jet was

used. However, successful production of aerosol in the argon/steam mixture with heated

components of the experimental setup could not be achieved. Indeed, the breakdown

potential of argon is lower than that for nitrogen [51]; furthermore, the breakdown

potential is substantially reduced at elevated temperatures [51]. Therefore, electric field
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Figure 2.7 Heating coil added to experimental to allow use of steam as the shroud jet. 
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achievable without breakdown with argon between the plate capacitor electrodes was 

very low and was inadequate for aerosol jet production. 

The superheated steam generator included a peristaltic pump (Variable Speed Pump by 

Control Company) supplying a metered amount of liquid water (typically, O.lml/min) 

into a steel tube (3.1 mm diameter, 5 m overall length) coiled inside a tube furnace (Tube 

Furnace 21100 by ThermoLyne). Figure 2.8 shows a schematic diagram of the steam 

generator. A metered nitrogen flow, measured by a gas flow meter (M-200SCCM-D by 

Alicat Scientific Inc.), was also fed through the coiled steel tube placed in the furnace. 

The nitrogen flow was necessary to maintain a smooth flow of liquid water from the 

peristaltic pump while ensuring its uniform boiling inside the furnace (see Figure 2.8). 
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Figure 2.8 Schematic diagram of steam generator. 

24 

Superheated Steam 
+ 
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The furnace was pre-heated and maintained at 673 K (400 DC) to produce a mixture of a 

superheated steam and nitrogen gas. A heated steam hose maintained at 423 K was used 

to deliver the steam/nitrogen mixture to the aerosolizer. 

The aerosolizer top electrode (negative) was also maintained at 423 K using a flat 

spiral heating coil element (coil dia.:3 in, 240V-250W, cable dia.:0.094 in, cable length: 

30 in) welded between the disks of the top electrode. The superheated steam/nitrogen 

mixture from the heated hose is fed as the shroud jet around the central nitrogen jet 

carrying aerosolized particles. The top electrode also heated the nitrogen gas in the 

chamber to around than 423 K thus eliminating any temperature gradients between the 

central and shroud jets. 



CHAPTER 3

HEATING OF METAL PARTICLES IN TRANSITION REGIME

3.1 Outline

This chapter deals with analysis of heating and ignition of small metallic particles in hot

gases for a range of Knudsen numbers, for which the continuum description of heat

transfer is not valid. A modified Fuchs' model for the transition heat transfer analysis

[52] was adapted to treat diatomic gas with properties changing as a function of gas

temperature. The dimensionless heat transfer coefficient, Nusselt number, was calculated

as a function of particle diameter for the transition heat transfer regime. Heat transfer

rates in the transition regime are somewhat different from one another for the cases of

particle heating and cooling while the absolute values of the particle-gas temperature

difference are the same. This effect does not exist for the continuum heat transfer model.

It is observed that the applicability of the continuum heat transfer model for particles of

different sizes depends on pressure and particle-air temperature difference. For example,

for particles at 300 K heated in air at 2000 K, the continuum heat transfer model can be

used for particle diameters greater than 10 and 1µm at the pressures of 1 and 10 bar,

respectively. Transition heat transfer model must be used for analysis of heat transfer for

nano-sized particles. For calculating ignition delay in practical systems, the continuum

model remains useful for particle diameters greater than 18 um and 2 um for 1 and 10

bar, respectively. The sensitivity of the transition heat transfer model to accommodation

coefficient is evaluated. It is found that for metallic particles, accommodation coefficient

has a relatively weak effect on the heat transfer rate.

25



26

3.2 Introduction

Problems involving heat transfer between spherical particles and quiescent gas are

ubiquitous in such applications as laser-induced incandescence (LII) [53-55], solid

propellant combustion [56-59], metal powder explosions in air [60-62], etc. Such

problems also need to be considered in multiple laboratory experiments, such as powder

ignition in shock tube experiments [32-36] and laser ignition of aerosol particles [63, 64].

In many cases, the particle sizes are of the order of microns and the treatment of the

surrounding fluid (gas) as a continuum medium becomes invalid. Typically, transition

heat transfer regime is recommended when Knudsen number, Kn, defined as Kn = AA ,

where A is the mean free path in gas and D is particle diameter, is in the range of 0.01 —

10 [65]. Figure 3.1 shows two constant Knudsen number lines for Kn = 0.01 and Kn = 10,

in the coordinates of particle diameter and temperature of air at atmospheric pressure.

Conditions of heat transfer for most micron-sized particles in the applications mentioned

above should be described by the transition regime.

Transition heat transfer regime has been dealt with extensively in the literature

[65-67]. Various quasi-steady analytical solutions [67, 68] as well as interpolation-based

approaches [69-72], describing heat transfer, have been proposed. In most of the

suggested models, such as based on T-jump approximation [71] and others, a small

temperature difference between particle and quiescent ambient gas is assumed. This

assumption makes the respective models unacceptable for applications listed above,

where a particle is typically heated to a temperature exceeding that of the surrounding gas

by thousands of degrees. For a two-layer model proposed by Fuchs [73] and modified by

Wright [74] the assumption of small temperature difference between the particle and gas
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Figure 3.1 Constant Knudsen number lines as a function of particle temperature and gas
temperature.

is less critical and can be relaxed. Recently, the Fuchs' model has been validated using

direct Monte Carlo simulation. The model [66] has been shown to be advantageous

compared to other proposed approaches [65, 66] and is recommended for use in many

related applications. The model is relatively simple and readily implemented, but it still

requires iterative evaluation of the temperature at the boundary between the "free-

molecular layer" and "continuum" surrounding. Thus, for each specific application it is

desirable to determine the range of particle sizes and experimental conditions when the

use of this model is necessary. This study focuses on the applications dealing with

particle ignition. In this case, the most readily detectable experimental parameter is an

ignition delay for a heated particle. The discrepancy between the ignition delays

predicted by the modified Fuchs model and by the continuum heat transfer calculation is

determined and discussed for particles of different sizes. In addition, the version of the
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Fuchs model that was validated in Ref. [66] has been further modified to account for a

diatomic gas with thermal properties varied as a function of temperature. The effects of

transition regime heat transfer on heating and cooling of particles of different diameters

are considered and compared to each other. Finally, the sensitivity of the predicted heat

transfer rate to a usually poorly known accommodation coefficient is considered.

3.3 Transition Heat Transfer Model by Fuchs Modified for Diatomic Gas

A model describing heat transfer for a sphere in transition regime was proposed by N.

Fuchs [73]. The model introduced a so-called Langmuir layer with thickness g, adjacent

to the particle. The heat transfer within the Langmuir layer is assumed to occur in the

free molecular regime while outside the layer, the heat transfer is described by a

continuum model. The free-molecular expression for the heat transfer rate within the

Langmuir layer is given as [66]:

(3.1)

where a is the accommodation coefficient, mg is the mass of a gas molecule, kB is the

Boltzmann constant, D is the particle diameter, Pg is the ambient gas pressure, Tp is the

particle surface temperature, Tδ is the gas temperature at the boundary of the Langmuir

layer i.e., at a distance of (D/2 + 6) from the center of the particle, and y is the adiabatic

index of the ambient gas. The superscript '*' indicates that the value of y is averaged over

the temperature range of (Tp TS) [66], calculated as:

(3.2)
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In the region outside the Langmuir's layer, heat transfer is calculated using the continuum

regime expression [66],

(3.3)
T8

where k is gas thermal conductivity. The Langmuir's layer thickness δ(Tδ ) is

approximately equal to one mean free path λ(T δ ) [65, 74].

The value of 2 is calculated for a mono-atomic gas in Ref [66] as:

(3.4)

The effect of any pressure difference between the gas in the Langmuir' s layer and the

ambient gas is neglected. Note that Eq. (3.4) is different from a more general equation

reported in Refs. [65, 75] and describing the mean free path in polyatomic ideal gases

(see Eq. 3.5 below). Equations (3.1) and (3.3) can be solved iteratively for To, so that the

rate of heat transfer can be determined.

The modified Fuchs' model described above has been validated using direct

Monte Carlo simulations [72] in Ref [65, 66] for a hypothetical mono-atomic gas. In

order to use this result for air, which is a diatomic gas, air properties, such as thermal

conductivity and adiabatic index [76] should be used instead of the mono-atomic gas

properties. In addition, Eq. (3.4) used for the mean free path calculation should be

replaced by an equation appropriate for a diatomic gas. As noted above, a more generic

equation for the mean free path is available and given, for example, by [65] and [75]:

(3.5)
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When applied to a mono-atomic gas, i.e. 7= 5/3, Eq. (3.5) is different from Eq. (3.4) by a

constant factor 
•

of'/ While Eq. (3.5) allows one to account for the polyatomic gas
3 

properties depending on the specific heat ratio, 7,  the direct validation of the Fuchs'

model was performed in Ref. [66] using Eq. (3.4). Thus, in order to use the Fuchs' model

validated in Ref. [66] to describe heat transfer in a polyatomic gas, Eq. (3.5) replaced Eq.

(3.4) while being corrected by the factor of 3/ .

Figure 3.2 shows the dimensionless heat transfer coefficient or Nusselt number as

a function of Knudsen number and as a function of the particle diameter for a selected

fixed combination of particle and air temperatures. The accommodation coefficient is

assumed to be equal to 1. The value of Nusselt number approaches to '2' for bigger

Figure 3.2 Nusselt number as a function of Knudsen number (and particle diameter)
calculated for transition regime heat transfer using Fuchs' model for mono-atomic gas
[66] and for air considering air properties as a function of temperature.
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particles indicating the approaching continuum regime. The dashed curve is for the

hypothetical mono-atomic gas used in Ref. [66]. Note that the scale is logarithmic so the

difference between the curves for mono-atomic and diatomic gases is not insignificant.

The Nusselt number is obtained from the calculated heat transfer rate, q.

(3.6)

where,

(3.7)

In the continuum regime, heat transfer is independent of pressure. However, in

transition regime analysis, the rate of heat transfer becomes a strong function of pressure.

In the continuum regime, heat transfer rates are of the same magnitude for heating and

cooling of a particle in hot and cold gas, respectively, when the absolute value of the

particle-gas temperature difference is the same. This is no longer the case for transition

and free-molecular regimes, where the magnitudes of heat transfer rates for particle

heating and cooling become different even when the absolute value of the particle-gas

temperature differences are the same. Indeed, the transition regime heat transfer rate

depends on the Langmuir' s layer thickness, 8, which is effectively equal to the mean free

path at Ts.. The value of T5 is not a simple average of the particle and gas temperatures

but an iterative solution of Eq. (3.1) and (3.3) and the thicknesses of the Langmuir' s

layers are different for the cold and hot particles of the same sizes placed in hot and cold

gases, respectively. Further, for small particles, Ty is closer to the gas temperature than to

the particle temperature, while the opposite is true for large particles. Thus, the

difference between the heat transfer coefficients for heating and cooling reverses around
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a specific particle size, depending on particle-gas temperatures and gas pressure. Figure

3.3 shows Nusselt number defined by Eq. (3.6) and calculated as a function of particle

diameter for particle's heating and cooling in air. When a colder particle is being heated

in air, for the considered air and particle temperatures, the heat transfer rate should be

calculated using the Fuchs' model for particles less than about 10 and 1 µm for pressures

of 1 and 10 bar, respectively. When a hotter particle is being cooled in air, the Fuchs'

model should be used for particles smaller than about 50 and 5 1.1m for pressures of 1 and

10 bar, respectively. The above cutoff limits were calculated while allowing a 5 %

deviation from the value of Nu = 2 corresponding to the continuum heat transfer regime.

The difference between the transition and continuum heat transfer approximations is

more pronounced for the particle cooling than for its heating for micron size particles and

vice-versa for smaller particle sizes.

Figure 3.3 Nusselt number calculated as function of particle diameter and pressure for
transition heat transfer regime at pressures of 1 and 10 bar. Particle heating: Tg=2000 K
and Tp= 300K. Particle cooling: Tg = 300 K and Tp = 2000 K
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3.4 Ignition Delays for Particles Heated in the Transition Regime

For many experimental situations, ignition can be modeled based on the heat balance

analysis for an igniting particle. For example, for an experiment in which particles are

ignited in a shock wave [32-36], the heat balance can be written as:

(3.8)

where M is the particle mass, C is its specific heat, and Tp is its temperature; Qchemical is

the chemical heat generation rate, which is the term describing an exothermic process

responsible for ignition, and QRadiation and QConvection  are the radiation and convection heat

transfer rates, respectively. The two latter terms can lead to the particle heating when it is

below the environment temperature (and below the temperature of the surrounding walls)

and to its cooling when the particle starts self-heating above the environment gas

temperature due to the chemical heat generation. The radiation term is readily

determined from the Stefan-Boltzmann law:

(3.9)

where c is emissivity, osB is Stefan-Boltzmann constant, and Tp and Tw are the particle

and surrounding wall temperatures, respectively. It is assumed that the ambient gas

temperature, Tg is equal to the wall temperature, Tg=Tw.

The convection term, Convection 
9 

is calculated using the transition regime heat

transfer model described above. For comparison, the convection term is also calculated

using the continuum model and neglecting particle slip, i.e., assuming that Nusselt

number, Nu=2.
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(3·10)

The chemical heat generation rate term needs to be specifically described for each

material· In this project, a simplest Arrhenius-type model was used· The specific model

used in calculations was suggested for description of ignition of spherical magnesium

particles [7, 58, 77]

(3·11)

where A, is Arrhenius pre-exponent, Ar=10¹°k ·m-2 ·s-¹ [7], AHox is heat of oxidation for

magnesium, Ea is activation energy, Ea= 215 kJ/mol, [7, 58, 77], and R is the universal

gas constant· Note that the specific values of activation energy and pre-exponent

employed here were reported in the literature based on ignition experiments for micron-

sized particles· Such a description is expected to provide a reasonable accuracy for the

calculations presented in this paper, while it clearly neglects the effect of transition

regime heat and mass transfer processes on the rate of chemical reaction· In the future,

such effect will need to be considered and a modified expression for the rate of heat

generation due to chemical reaction will need to be derived·

The event of ignition was defined by the particle temperature runaway due to a

rapid heat release by magnesium oxidation· Figure 3·4 shows the temperature histories

predicted for a magnesium particle inserted in air at the air temperatures just below and

just above the ignition threshold· Ignition delay is defined as the time required to reach

the temperature runaway· When the environment temperature is below the ignition

threshold, the temperature runaway is never observed·
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Two parallel sets of calculations for ignition delays were performed, one using the

modified Fuchs' model and the other using the continuum regime model for the heat

transfer analysis· Ignition delays were calculated for magnesium particles with initial

temperature of 300 K heated in a quiescent air at 2000 K· Figure 3·5 shows the ignition

delays calculated as a function of particle diameter at the pressures of 1 and 10 bar· Due

to a slower heat transfer predicted by the transition regime model as compared to the

continuum case, much longer ignition delays are predicted for submicron sized particles

heated in the transition regime· The effect diminishes as the particle size increases· The

effect is also reduced for elevated pressures· It is observed that for specif¹c air and

particle temperatures considered, the continuum model can be used to predict ignition

delays for particles greater than 18 and 2 um for pressures of 1 and 10 bar, respectively·

Figure 3.4 Temperature histories for Mg particle inserted in air at the air temperatures
just above (solid line) and just below (dashed line) of the ignition threshold· Ignition
delay is measured from time t = 0, the moment when particle is exposed to hot air·
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Figure 3.5 Calculated ignition delay of Mg particle at 300 K inserted in air at 2000 K as
function of particle diameter and pressure·

Figure 3.6: Calculated ignition delay of Mg particle at 300 K inserted in air at 2000 K as
function of particle diameter and accommodation coeff¹cient·
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The particle size cutoff was calculated allowing 5% errors in the ignition delays

predicted by the continuum regime calculations· Note that the ignition delay calculation

considers the particle at a continuously increasing temperature· The initial part of the

heating process, when the particle-gas temperature difference is the greatest, affects the

predicted ignition delays most significantly·

The sensitivity of ignition delay to accommodation coefficient, a, used in describing the

free molecular heat transfer in Eq· 3·1 was also considered· Figure 3·6 shows ignition

delay as a function of particle diameter at air pressure of 1 bar for different

accommodation coefficients· The breakdown of the continuum model occurs at larger

particle diameters for smaller values of the accommodation coefficients· The

accommodation coefficient for metal particles usually varies in the range of 0·5 to 0·95

[78]· Thus, according to Figure 3·6, the practical calculations of ignition delays would be

relatively insensitive to uncertainties in the value of the accommodation coefficient used

in the transition model·

3.5 Conclusions

The modified Fuchs' model for transition regime heat transfer was expanded to account

for the properties of diatomic gases as a function of temperature· The dimensionless heat

transfer coefficient, Nusselt number, was calculated as a function of particle diameter

using this expanded Fuchs' model· Heat transfer rates predicted by the model are

somewhat different from one another for the cases of particle heating and cooling while

the absolute values of the particle-gas temperature difference are the same· This effect is

not predicted by the continuum heat transfer calculations· It is observed that the
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applicability of the continuum heat transfer model for description of heating or cooling of

particles of different sizes depends on pressure· For processes involving particle heating

by laser, particle ignition and similar processes, the continuum heat transfer model can be

used for particles with diameters greater than about 10 gm at 1 bar, and for particles

greater than about 1 gm at 10 bar pressure· Transition heat transfer model must always

be used for analysis of heat transfer for nano-sized particles· For calculating ignition

delay, the continuum model remains useful for particle diameters greater than, 18 gm and

2 gm for 1 and 10 bar, respectively· A usually poorly known accommodation coefficient

is observed to have a relatively small effect on the heat transfer rate in the transition

regime for metallic particles·



CHAPTER 4

MODELING: HEATING AND IGNITION OF SINGLE ALUMINUM PARTICLE

WITH A CO2 LASER IN AIR

4.1 Introduction

This chapter describes experimental results and a heat transfer model for heating and

ignition of a micron sized spherical aluminum particle upon its irradiation by a focused

CO2 laser beam· The model is suitable to interpret the experimental data produced with

the setup introduced in chapter 2· Heating of such small size particles in a gas should be

described using transition regime heat transfer· The procedure for accounting for

transition regime heat transfer described in chapter 3 has been adopted for aluminum and

used here· The absorption of the CO2 laser energy by an aluminum particle which (along

with the exothermic chemical reaction) is responsible for heating the particle is also

discussed· The chemical energy released by oxidation of aluminum is calculated using

the alumina layer phase transformation model [27]·

4.2 Experiment and Heat Transfer Model

The model calculates the temperature history of a single aluminum particle heated by a

focused CO2 laser beam· The particle is heated while crossing the laser beam, so that the

characteristic particle heating times, determined by the particle speed and the beam

diameter are in the range of 0·1 — 3 ms· These times are much longer than the

characteristic time of temperature equilibration within the particle, r D2/a —0·1 µs,

where D is the particle diameter and a is the metal's thermal diffusivity· Thus, the

39
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temperature gradients within metal particles are neglected· The model considers only the

particles of a selected diameter that are heated by the CO2 laser most effectively· This

diameter is determined below while analyzing the interaction of the laser irradiation with

the metal particle·

Moreover, the experimental aerosol jet is assumed to be sufficiently thin to

neglect the interaction between the particles· For the average feed rate of 1000 particles

per second, the particles moving at about 1 m/s were separated from one another by a

distance of the order of 1 mm· Because only a fraction of particles was heated by the

laser and ignited, the heat transfer between the particles could safely be neglected·

The particle's temperature history is calculated using the heat balance:

(4·1)

where M is the particle mass, C is its specific heat, and Tp is its temperature; Q,„„ is the

heat transfer rate to the particle from the laser beam, QChe„„„/ is the chemical heat

generation rate, which is the term describing an exothermic process responsible for

ignition, and QRadiation and QConvection anare the radiation and convection heat transfer rates,
A.- 

respectively· The overall goal of the proposed experimental methodology and this model

is to determine the term QChemical as a function of temperature, and thus obtain the
A—, 

quantitative description of the ignition kinetics· Therefore, all the other heat transfer

terms must be readily calculated· The radiation term is readily determined from the

Stefan-Boltzmann law:

(4·2)
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where c is emissivity, σSB is Stefan-Boltzmann constant, Ti, and Tg are the particle and

ambient air temperatures, respectively, and D is the particle diameter· The ambient air

temperature is assumed to be equal to the temperature of the surrounding surfaces· The

value for emissivity was selected based on the literature references [79] for aluminum

surface· Note that unless specifically processed, aluminum surface is always oxidized,

similar to the particles used in these experiments, validating this selection· The

calculation of terms QConvection and QLaser is less straightforward· The convection term wasQ

calculated considering that for micron-sized particles, the mean free path of the gas

molecules is comparable to the particle diameter· As a result, a transition regime heat

transfer model based on Fuchs' model was used, as described in chapter 3· The laser

absorption efficiency of the particle was estimated taking into account the absorption and

scattering of the laser beam, due to the comparable particle size and laser wavelength [47,

80, 81]· A theoretical analysis describing the laser heating of micron-sized metal particles

was reported in the literature [47]· However, the effects of particle melting and the

specific distribution of the laser power across the beam have not been considered· The

analysis presented in Refs [47, 80, 81] was reproduced and expanded in this study· The

width of the laser beam was difficult to quantify experimentally with the desired accuracy

and it was treated as an adjustable parameter· In order to find this parameter, aluminum

particles igniting in air were considered, for which the ignition kinetics relations were

reported recently [24-27]· Therefore, the term Qchemical was known so that the comparison

of the ignition threshold predicted by this model to the experimentally measured

threshold was used to fully define the laser heat input to the particle i·e· to quantify the

diameter of the focused CO2 laser beam· The developed model and the fully quantified
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term a., can be used to determine the unknown QChemical terms for different powders

ignited in different environments·

4.3 Laser Heating Term

The energy distribution in the CO2 laser beam is assumed to be Gaussian and the beam

profile is considered circular· Because the laser wavelength and considered particle size

are comparable, Mie's scattering theory was used to describe the laser-particle

interaction· The coefficient for absorption efficiency of the laser energy by the particle is

calculated as a function of the particle diameter and temperature·

4.3.1 CO2 Laser Beam Energy Distribution

The size and profile of the CO2 laser beam focal point is required to calculate the laser

energy absorbed by the particle· Considering a particle moving in the vertical direction,

along `z-axis', the laser power density 1(z), is commonly described by a Gaussian profile

[82] and can be expressed as:

(4.3)

where W is the total beam power and o- is the standard deviation for the beam's Gaussian

function centered around z=0· The value of a (or 6o- approximately equal to the beam

diameter, Dbeam) was varied as the model's adjustable parameter, as further discussed

below·

Figure 4·1 illustrates quantitatively the change in the laser energy intensity experienced

by a particle moving vertically, for a total beam power, W 7·5 W and a beam diameter

Dbeam = 350 um· The beam diameter was initially assumed to be equal to 330 um,
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Figure 4.1 Laser energy distributions in the beam cross-section at 7·5 W of laser power
for D = 350 µm

according to the measurements of the beam impression (Figure 2·4)· However, the exact

value of the diameter is hard to determine and this diameter was later allowed to vary as a

model's adjustable parameter·

4.3.2 Absorption Efficiency

To determine the energy delivered to a particle by the laser beam, consider a particle that

crosses a horizontal beam while moving along the vertical axis, z· The laser energy

absorbed by the particle is a function of the particle absorption eff¹ciency, q, and laser

spatial power density 1(z), and can be calculated as:

where q is the particle's laser absorption efficiency depending on the laser wavelength, 2,

particle diameter, D, and material's complex refractive index, m·

The laser energy absorption efficiency as a function of particle size and

temperature has been described in the literature for spherical metal particles [47, 80]· The
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absorption efficiency was calculated for temperatures ranging from room temperature to

above particle's melting point using the Mie's scattering theory· Drude's model [47] was

used to find the complex refractive index as a function of temperature·

Mie's scattering theory [47, 80] requires the complex refractive index, m, for the

particle's material, which is determined from the Drude's theory [47] as:

where n and k are the real and imaginary parts of m, respectively; co is the angular

frequency of incident radiation (CO2 laser), cop is the plasma frequency and y is the

electron lattice collision frequency· Plasma frequency is a weak function of temperature

[47] and is assumed to be independent of particle's temperature· The collision frequency

changes as a function of temperature similar to the electrical resistivity of material [47,

80] :

where To = 300 K, a is the temperature coefficient, and yo is the collision frequency at

300 K· The values of cop, yo and a for Al are evaluated in Ref· [47] and were reproduced

here· The respective values for Mg were also calculated following Ref· [47] and using

available experimental data for complex refractive index for Mg in the wavelength region

of 1 - 20 lam [83], and for electrical resistivity of Mg as a function of temperature in the

range of 300 - 3000 K [79]· The final parameters used in the model are listed in Table

4·1·

Once the complex refractive indices are found, the absorption efficiency is

calculated as a function of the particle diameter and temperature using Mie's scattering
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Table 4.1 Drude's Theory Parameters Used to Calculate the Complex Refractive Index
[47]

theory, as described in Ref [47, 80]· A brief description is presented below·

The absorption efficiency based on cross-section can be defined as,

where D is particle diameter and,

where

x = πD  I A. = SizeParameter 	 (4·10)

Symbol ' A ' indicates logarithmic derivative· 'a' and 'b' are the absorption coefficients

and form a converging series· The absorption coefficients are calculated using steps

described in appendix 'A' of Bhormen and Huffman [80]· The value of the coefficient

decreases rapidly and only first few terms (q2 ) contribute to the value of the absorption

cross-section· The number of significant terms can be estimated as

(4·7)

(4·8)

(4·9)
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(4·11)

ψj  and	 are Bessel functions satisfying recurrence relation and are calculated by

upward recurrence using following relations,

(4·12)

(4·13)

	

(x) cos(x), ψ0 (x) = sin(x) 	 (4·14)

	 χ-1(x) = — sin(x), 0 (x) cos(x)	 (4·15)

The logarithmic derivative ' A ' in the expressions for 'a' and `b' satisfies the following

recurrence relation and is calculated using backward recurrence·

(4·16)

where,

(4·17)

and

(4·18)

Figure 4·2 shows the absorption efficiency for aluminum as a function of particle

diameter presented in the literature [47] and reproduced in this study· Similar calculations

were also performed for magnesium· The results are presented in Figure 4·3· It was

observed that for a specific laser wavelength (10·6 gm for CO2 laser), the absorption

efficiency peaks at the same particle size (D 3·37 lam) for different metals· Because of

this particle size selective heating, only the particles with the peak absorption efficiency

ignite at the threshold laser power in the present experimental methodology· In practical
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Figure 4.2 CO2 laser beam absorption efficiency as a function of aluminum particle size
for different temperatures· The results are obtained in this work and reproduce the data
reported earlier [47]· The peak efficiency occurs for the metallic particle diameter of 3·37
µm, nearly independently of material·

Figure 4.3 CO2 laser beam absorption eff¹ciency as a function of magnesium particle size
for different temperatures· The peak efficiency occurs for the metallic particle diameter
of 3·37 lam·
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Figure 4.4 CO2 laser beam absorption efficiency as a function of aluminum particle
temperature· The jump occurring upon melting is described in Ref. [81].

terms, estimates showed that the experimental error in the laser power will lead toignition

of particles within a size range of about 3.3 — 5 um.

The model was modified to take into account the melting effect on the absorption

efficiency [81]. On melting, the particle density changes abruptly [79] and the absorption

eff¹ciency experiences a jump as shown in Figure 4.4. The overall absorption efficiency

for a particle undergoing melting was calculated as a weighted average of the eff¹ciencies

for its solid and liquid parts.

4.4 Convection Term

For a 3.4 um diameter particle in an atmospheric pressure air at room temperature, the

value of Knudsen number (Kn) is close to 0.03. The conventional, continuum convection

model is only valid for Kn<0.01, and at greater values of Kn, a transition model needs to

be considered. The correction for the dimensionless heat transfer coefficient or Nusselt
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number (Nu) is described in chapter 3, as shown in Figure 3.2, for a specific combination

of the particle and gas temperatures as relevant to this work. It is clear that the correction

is significant compared to Nu=2  for continuum heat transfer. Properties of dry air [16]

including the adiabatic index, y,  and thermal conductivity, kg, were used. An

accommodation coefficient of A = 0.87 for Al particle [78] was used. Literature data

summarized in Ref [78] indicate that the accommodation coefficient for Al can vary in

the range of 0.87 — 0.97 depending on the surface finish and etching. The value selected

in this project is for a clean, un-etched surface that is normally expected to be coated with

alumina.

4.5 Chemical Term

For Al powder used in the experiments, the ignition model described recently [24-27] was

used. The model calculates the rate of oxidation that is limited by the rate of transport of

oxygen or aluminum through the protective surface oxide layer. It has been reported that

aluminum powders are coated with a 2.5-nm thick layer of amorphous alumina [42-45]

which was the assumed initial oxide coating in the model. As the particle temperature

increases, different polymorphs of Al203 become stable [24,46] and the model considers

the kinetics of respective polymorphic phase transitions. The transformations

accompanied by significant increase in density of alumina, such as amorphous to y-

alumina and y- to a alumina can also be accompanied by disruptions in continuity of the

protective oxide. Thus, the oxidation rates and respective heat release rates are predicted

to increase rapidly when such phase changes occur. Further details of the oxidation

model for aluminum particles are available in Ref.[27]. The model was developed for
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aluminum ignition in air [24-27]. Therefore, it is acceptable for description of the present

experiments in which aluminum ignition in air is being considered.

4.6 Results and Discussion

The model was used to predict the temperature history for a particle crossing a laser

beam. The calculations were performed for different particle velocities, corresponding to

the experimental aerosol jet velocities. For each calculation, the laser power was allowed

to vary to find the threshold power at which ignition was predicted to occur. Figure 4.5

shows calculated Al particle temperature histories at three different particle velocities.

The dashed curves show the particle temperatures when the laser power is just under the

ignition threshold.

The heating up and cooling down parts of the curves correspond to the particle's

entrance to and exit from the laser beam. The solid curves, showing the particle

temperature histories at the threshold power, are closely following the dashed curves

during the initial heating period. The curves diverge as the particle temperature increases

and the role of term —Chemical becomes increasingly significant.

The calculations were performed until the particle temperature reached the

alumina melting point of 2320 K. Above this temperature, the analysis of heterogeneous

processes rate limited by diffusion through the oxide layer may no longer be relevant.

Furthermore, the oxide coating can no longer remain protective and so the particles

reaching this temperature considered ignited.

Three cases illustrated in Figure 4.5 correspond to different heating rates (or

different velocities at which the particles crossed the laser beam.) It is clear that at lower
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Figure 4.5 Temperature histories for laser-heated 3.37 pm diameters Al particles
calculated for three different particle velocities. The dashed lines show the cases when
the laser power is just below the ignition threshold and the solid lines show the cases with
the laser power at the threshold.

heating rates, the predicted ignition threshold laser power is also lower.

A comparison between different terms in the energy equation, Eq.(4.1) is shown

in Figure 4.6 for a case of a particle crossing the laser beam at 0.59 m/s and the laser

power set at 14.5 W. Radiation heat losses are insignificant and are always less than 1 %

of the laser heat input. Therefore, the specific choice of particle emissivity, which is

poorly known for oxidized Al surface, is not important. Convection heat losses represent

the dominant heat removal mechanism for the particle. The chemical heat input comes
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into play and becomes noticeable only after the particle reaches a certain temperature. A

sharp increase in the chemical heat generation after the melting plateau is due to a very

rapid reaction controlled by the gas phase diffusion to the portion of Al surface exposed

to air after the phase transformation from amorphous to gamma alumina polymorph [24-

27]. Once the openings in the newly formed gamma oxide heal, the reaction starts to be

controlled by the condensed phase diffusion producing a sudden decrease in the rate of

chemical heat generation [24, 25].

Figure 4.6 Different terms of the energy equation, Eq. (4.1) for an Al particle of 3.37 µm
diameter crossing a CO 2 laser beam, set at 14.5 W, at 0.59 m/s.
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Figure 4.7 Experimental results and calculated laser power thresholds for ignition of Al
particles for different particle velocities (at different heating rates). Each line is calculated
by selecting 6a =Dbeam to match one of the experimental points.

Experimental laser power thresholds for ignition of Al powder at three different

particle velocities are shown in Figure 4.7. The powder ignited at 14.5 W, 23.5 W, and

37.4 W for the particle velocities of 0.59 m/s, 1.37 m/s, and 2.42 m/s respectively. For

each pre-set laser power level, the ignition was detected optically, using the PMT ignition

peaks. At the threshold power, at least one particle was observed to ignite during a

period of 8 second. This ignition statistics is reasonable considering a small number of

particles with diameters in the range of 3.3 - 5 um among poly-dispersed aluminum

particles fed into the aerosol jet. In addition, only a fraction of particles in the jet crossed

the laser beam close to its centerline while the particles crossing the beam at its periphery

were heated to a much lower temperature. The error bars for the threshold laser power

show the step size used to adjust the laser power experimentally as well as the

experimental error in the laser power setting. The error bars shown for the particle
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velocities represent the standard deviation for the velocity measurements based on the

multiple recorded particle streaks.

The adjustable parameter, 66, describing the width of the Gaussian profile for the

energy distribution across the laser beam was varied between 240 and 292 µm to

match the experimental laser threshold powers at different heating rates. For each

measured threshold laser power corresponding to a specific heating rate, the value of 66

was found at which the predicted laser power matched the experiment. This value was

then used to predict the laser threshold powers for the entire range of heating rates used in

experiments. Thus, the three resulting calculated lines are shown in Figure 9; each line, as

described above, was selected to match one of the experimental points exactly. Most

importantly, for all three cases the overall predicted dependencies of the laser threshold

power on the heating rate (or particle velocity) match well the experimental trend. The

value of 6u =260 pm, selected for the laser threshold power at the highest heating rate,

appears to match the experimental points at different heating rates best and is considered

as the final selection for the model's adjustable parameter.

The developed model describes the experiment adequately and the calibrated heat

transfer term describing the CO2 laser heating of metallic particles can now be used to

determine the unknown ignition kinetics for powders other than spherical aluminum used

in these experiments. Alternatively, the same methodology can be used to determine the

kinetics of aluminum ignition in environments other than air. The unknown term QChemical

can be found by matching the experimental and calculated trends for the laser power

ignition threshold as a function of the heating rate and using the terms QLaser QRadiation

and 0—convection determined above.
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4.7 Summary

Heat transfer model was developed to interpret result produced by the experiment

described in chapter 2. The developed heat transfer model includes radiation, convection

in the transition regime, and a detailed analysis of the heat transfer from a laser beam to

metal particles. Transition regime heat transfer described in Chapter 3 was used to

estimate convective heat loss from the particle to surrounding environment. Absorption

of laser energy by the particle was calculated using Mie's scattering theory. The model

considered heating rates on the order of 10 6 K/s achieved in the experiment, which are

close to those occurring in many practical applications of metal-containing energetic

materials. Because the experiment uses a CO 2 laser to heat micron-sized metallic

particles, which are comparable to the laser beam wavelength, the heating is most

efficient for the particles of a specific diameter, close to 3.37 µm. This particle size-

selective heating simplifies dramatically the theoretical analysis of the heat transfer while

allowing one to use regular poly-dispersed powders in experiments. The model was

calibrated comparing the calculations and experimental data acquired for spherical Al

particles, for which the ignition kinetics parameters were determined elsewhere. The

developed experimental technique and the heat transfer model enable one to quantify the

kinetics of ignition of a metallic particle in a gaseous environment of interest. The heat

transfer term describing the unknown ignition kinetics can be determined by matching the

experimental and predicted laser power thresholds necessary for particle ignition at

different velocities at which the particles cross the laser beam and, therefore, for different

heating rates.



CHAPTER 5

ALUMINUM PARTICLE IGNITION IN DIFFERENT OXIDIZING

ENVIRONMENTS

5.1 Introduction

Aluminum powder is widely used as a fuel additive in solid propellants, explosives, and

pyrotechnics. Ignition and combustion of aluminum particles have been extensively

studied in the past but many of the related processes are not understood sufficiently well

to enable their quantitative modeling. Currently, research of aluminum ignition and

combustion in various configurations is very active involving both experimental [25, 84 —

86] and modeling [27, 87, 88] efforts. Quantitative description of particle ignition

processes is of specific importance for the practical applications, in which such processes

determine ignition delays and bulk burn rates for aluminum. As described in section 4.5,

an ignition model for aluminum particle in oxygen was suggested based on detailed

thermo gravimetric (TG) studies of aluminum powders oxidation [27]. Oxidation was

established to occur in several steps, including growth of the initial amorphous oxide

layer, a phase change from the amorphous to γ-Al2O3 polymorph accompanied by an

increase in the oxide density and formation of discontinuities in a thin alumina scale,

growth of γ-Al2O3 and its transformations into 0- and later α-Al2O3 polymorphs. Each

alumina polymorph presents a specific diffusion resistance and thus is oxidized at a

specific rate. The polymorphic phase transition result in stepwise changes in the

oxidation rate. The rates of mass transfer processes accompanying oxidation of different

alumina polymorphs and rates of polymorphic phase changes occurring in alumina were

56
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quantified based on the TG measurements [25]. Combining the quantitative description of

heterogeneous oxidation processes with the heat transfer analysis for aluminum particles

introduced in a hot gas environment or heated by another source (e.g., laser beam)

enables one to predict the ignition delay as a function of the particle size and external

conditions. The model was validated experimentally for the aluminum particles rapidly

heated and ignited in the CO 2 laser beam in air [8], described in Chapter 4.

However, in many practical applications oxygen is not the primary oxidizer

available for the ignition of aluminum powders. Instead, ignition occurs in CO2 and H2O

environments [89, 90]. This chapter deals with experimental study of ignition of

aluminum particles heated rapidly in well-controlled environments with 112O and CO2

being the primary oxidizers. The laser ignition experimental methodology is similar to

that for ignition experiments in air as described in Chapter 4. The experimental setup is

modified (see section 2.5) to enable studies of aluminum ignition in water vapor, carbon

dioxide, and mixed oxidizers.

5.2 Experimental Approach and Apparatus

This set of experiments is aimed to understand thermal ignition of aluminum particles in

different environments. The experimental approach is similar to the earlier experiments

conducted in air. Threshold CO2 laser power required to ignite a particle is measured for

a set of particle jet velocities in different gas environments. The experimental setup is

described in detail in Chapter 2. Figure 2.1 includes an aerosol jet generator, a 125 W

CO2 laser (by Synrad, Evolution 125 series) with a ZnSe convex lens (0.75" aperture and

4" focal length), and a modulated green laser (SUWTECH model DPGL-3000 by Photop
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Technologies, Inc) operated with a set of a semi-cylindrical and convex glass lenses to

produce a laser sheet for the jet visualization. In these experiments a more sensitive

photomultiplier tube (PMT) by Hamamatsu (model PMT C7247) was used to measure

emission traces of the heated and ignited particles.

In experiments involving H2O, superheated steam was generated using a

customized superheated steam generator as described in section 2.5.

For experiments with CO2 serving as an oxidizer, the shroud gas was pure CO2

and the heaters for hoses and components of the aerosol generator were turned off. CO2

was also used as the central jet carrier gas. For mixed CO2/O2 environments, a premixed

CO2/O2 mixture was used for both shroud and central gas flows.

5.3 Simulation of Gas Mixing for Ignition Experiments

A numerical simulation was used to establish the gas concentrations in the mixed flows

used in experiments. Gambit, a pre-processing software, was used to model the geometry

of the aerosol generator outlet. Experimental geometry of the central jet nozzle and the

shroud flow nozzle was directly introduced into the code. An axisymmetric cylindrical

geometry for the jet was considered. For the calculations, the space was covered by 2

different meshes. Both meshes used quadrilateral elements. The first, internal mesh had a

relatively small node-to-node distance of 0.1 mm. It was used in the central zone where

the jets were produced and where the concentration gradients were likely to be high. The

second, external mesh had a 5 mm distance between nodes, and was used for the ambient

gas. Computational fluid dynamic (CFD) code Fluent was used for numerical

calculations. Calculations assumed laminar gas flow and considered a gas jet neglecting
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the presence of particles. This analysis describes the experiments well considering the 

very low particle number densities used. 

The gases were introduced into the system using mass flow inlets, corresponding 

to the mass flow rate measurements obtained in experiments. The heat transfer to the 

walls was neglected and walls were assumed to be at the same temperature as the 

adjacent gas elements. 

The results of calculations for a specific case are presented for example m 

Figures. 5.1 and 5.2. These calculations used a N2 flow rate of 100 ml/min at 293 Kin 

Figure 5.1 Mole fraction of water as a function of vertical and horizontal coordinates for 
the produced mixed jet. The specific conditions are: Flow rate of N2 (central jet): 100 
mllmin at 293 K; Flow rates ofH201N2 mixture represent 100 mllmin ofN2 at 293 K and 
0.085 ml/min of liquid water. Temperature of all entering gases is 400 K. The final 
mixture consists of 57.5 mass % ofN2 and 42.5 mass % of H20. The environment is air 
at 293 K. 
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Figure 5.2 Concentration profiles for flow conditions presented in Figure 5.l; (a) H2O
and air mole fraction along the jet's axis; (b) H 2O mole fraction at radial positions away
from the jet axis.

the central jet and a mixture of H2O/N2 comprising of 0.085 ml/min of liquid H2O and

100 ml/min of N2 at 293 K in the shroud jet. These conditions are representative of those

used in experiments. Temperature of all entering gases is 400 K. The f¹nal mixture

consists of 57.5 mass % of N2 and 42.5 mass % of H2O. The environment is air at 293 K.

The environment along the axis of the jet is stable after around 10 mm from the jet exit.

The laser spot was focused at the jet 12 mm above the nozzle. These calculations were
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used to find out region with stable mixture environment and exact composition of

mixture at the laser focal spot.

Figure 5.1 shows that mixing of the starting H2O/N2 gas coming as a shroud jet

with the central nitrogen jet is nearly completed about 1 cm above the nozzle and that the

water concentration across the jet is nearly uniform at the location of the laser beam

(about 1 cm above the shroud nozzle). The specific water concentration present at that

location is important for further analysis of the experimental results.

Mole fraction profiles for H2O and air are shown in Fig. 5.2 (a). There is

effectively no contamination of surrounding air up to 12 mm along the jet axis. The CO2

laser was always focused within this region. Figure 5.2 (b) shows H 2O mole fraction at

positions radially away from the jet axis. H2O concentration is stable within 2-3 mm of

the jet axis which is more than the width of the jet.

Using the Fluent calculations, each of the experimental conditions shown in Table

1 was described.

Table 5.1 Volumetric Composition (%) of Gases at Laser Focal Spot in Different
Environments
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5.4 Material

Aluminum powder, spherical, 99% pure by Alfa Aesar with nominal average particle size

of 4.5 — 7 p.m was used in this study. Figure 5.3 shows the particle size distribution of

the powder as measured by laser diffraction technique (Beckman Coulter LS-230). Note

that while the particle size distribution does not peak around 3.4 lam (the particle size

heated by the CO 2 laser most effectively), the number of particles with this size is

substantial.

Figure 5.3 Particle size distribution of spherical aluminum powder, 99% pure aluminum
by Alfa Aesar with nominal average particle size of 4.5 — 7 pm, measured by Coulter LS-
230.

5.5 Experimental Procedure and Data Analysis

Experimental gas environments were produced as shown in Table 5.l. Threshold CO2

laser power required for particle ignition was measured for three different velocities for

each environment, similar to the experiments in air described in Chapter 4. The aerosol

jet velocity was measured using particle image velocimetry, with a modulated green laser

with modulation frequency in the range of 300 to 3000 Hz, with the higher frequencies
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selected for higher jet speeds. Produced particle streaks were recorded using the digital

camera and the streak lengths were measured to determine the jet velocity.

The CO2 laser was focused about 1 cm above the jet nozzle using an auxiliary red

laser aligned with the CO2 laser beam and the ZnSe lens. Once a stable aerosol jet was

established, the CO2 laser was fired continuously for 8 seconds, at a preset power level.

Visible radiation generated by heating and/or ignition of particles was monitored using a

PMT connected to a PC-based data acquisition system. The experiment was repeated

with the laser powers gradually increased until ignition events were clearly detected.

Each set of experiments was repeated at least three times.

Two approaches were combined to detect particle ignition. The first approach is

based on the shapes of particle emission pulses as used in experiments in Chapter 4.

Figure 5.4 shows typical examples of the recorded PMT output pulses produced by

particles crossing the CO2 laser beam (39.3 W) in air environment at a speed of 2.63 m/s.

The peak shape on the left indicates ignition and combustion event while the smooth peak

shape on the right implies the particle being heated by the laser without ignition. The

minimum ignition threshold was determined if at least one ignition event was detected

during an 8-s period the laser was fired. For each laser power setting the laser was fired

three times for 8 s. The laser power setting is assumed to ignite the powder if ignition

event is observed in all three 8 s runs. The measurements for both the jet velocity and the

laser power were made immediately before each ignition experiment. In the second

approach, in addition to peak shape analysis, the PMT peak data were also analyzed

statistically for the peak width of the ignition/heating pulses to ascertain the ignition

event. Figure 5.5 shows the frequency distribution of peak widths of pulses accumulated
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Figure 5.4 Typical examples of PMT signals recorded for Al particles in air crossing the
CO2 laser beam (at 39.3 W) in air environment at a speed of 2.63 m/s. The heating and
cooling of the un-ignited particles in the laser beam produces a narrow peak without a
plateau or an extended period corresponding to the particle combustion.

during 24 s (three 8-s runs) for different CO2 laser powers at the f¹xed jet velocity of 1.5

m/s in air. The peak shape analysis for this experiment gives the threshold laser power to

be at 20 W (between 18.l and 21.9 W). As can be seen from Figure 5.5, only a very few

narrow peaks are detected at the laser power of 12.1 W. Increase in the laser power to

14.8 W produces greater number of peaks and the peak widths begin forming a

distribution around 300 µs. In the first approach of signal processing described above,

these peaks were attributed to un-ignited particles heated in the laser beam, based on their

characteristic peak shape shown on the right in Figure 5.4. Upon further increase in the

laser power to 18.l W, peaks with substantially greater durations around 900 µs f¹rst

appear as a tail of the peak widths distribution. The shapes of these wider peaks are

similar to that shown on the left of Figure 5.4. These wider peaks are attributed to

igniting particles. Thus, for the example shown in Figure 5.5, based on the peak width

statistical distribution, the ignition threshold is detected at 18.1 W and the peak shape
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Figure 5.5 Frequency distribution of peak widths produced by emission of Al particles
crossing the CO2 laser beam in air. The aluminum aerosol jet speed is 1.5 m/s.

analysis is in agreement with peak width processing for detecting the laser power

corresponding to the ignition threshold. It is also interesting to note that as the power

increases, more and more particle combustion events are detected with the respective

peak durations close to 900 µs. Because of the particle size-selective heating of Al

particles in the CO 2 laser beam, it is reasonable to attribute this combustion duration to
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the burn time of the particles most efficiently heated by the laser, i.e., the particles with

the diameter of 3.4 µm. Using a burn time correlation proposed in Ref. [91] for

combustion of aluminum aerosol, t=310d, the burn time of a 3.4 µm particle is 1054 µs.

This is in good agreement with the measured time of 900 µs, which, in fact, is expected

to be shorter than the predicted time because of a faster reaction expected for the particle

while it is crossing the laser beam.

5.6 Results and Discussion

Experiments were conducted in five different environments shown in Table 5.1. The

initial set of experiment was performed in air. The threshold laser power needed for

ignition measured for air was slightly lower than shown in Chapter 4 which was

attributed to focusing of the CO2 laser beam at the calculated focal length for its

wavelength of 10.6 µm. In earlier measurements focal length for the red laser (0.65 µm)

was used to focus the CO2 beam as well. The refocusing resulted in a tighter focal spot

for the CO2 laser beam. The new measurement in air was processed using a similar

fitting procedure of matching the measured experimental laser threshold with that

calculated as described in Chapter 4 and using the beam diameter as adjustable

parameter. The fitting gave the beam diameter equal to 200 pm. This value was used as

the beam diameter for processing all experiments in mixed environments, discussed in

this chapter.

The experiments in air environments were repeated while turning on the heaters in

the shroud jet hoses and in the elements of the aerosolizer. It was observed that pre-
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heating the shroud gas to about 150 °C did not result in a meaningful difference in the

measured laser power ignition thresholds.

Figure 5.6 shows the threshold laser power measured for all f¹ve different environments.

For each environment, threshold power is measured for three different jet velocities, thus

producing three different heating rates. An increase in the jet velocity increases the

threshold power. CO2/O2 environment has the lowest threshold and H2O/N2 environment

has the highest. Threshold for air is slightly higher than that for CO2 O2 which is due to

higher amount of oxidizer. However, threshold for pure CO 2 environment is higher than

that for air indicating O2 to be a better oxidizer than CO2. In mixed H2O/O2/N2

environments, the ignition threshold depends strongly on the presence of O2. Adding 14

percent by volume of O2 to the environment with 35 percent of 142O lowered the ignition

threshold to effectively the same as for pure CO2.

It was further considered whether a simplified Arrhenius ignition model approach could

be useful for describing the ignition threshold results shown in Figure 5.6. The heat

balance of a single particle as described in Chapter 4 is used here (eqn. 4.1).

Figure 5.6 Threshold laser power required for ignition of aluminum particles crossing the
laser beam in different gas environments (refer to Table 5.1 for environment details).
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where M is the particle mass, C is its specific heat, Tp is its temperature; ; QLaseris

the heat transfer rate to the particle from the laser beam, QChemical  is the chemical heat

generation rate, and 6---Radiation and QConvection are the radiation and convection heat transfer

rates, respectively. Convection term is given by the Fuchs model described in Chapter 3.

QLaser and QRadiation are described in detail in Chapter 4. For a simplified approach, the

chemical term is described by a single term Arrhenius ignition model,

(5.2)

where A r is the Arrhenius pre-exponent, AHox is the oxidation enthalpy (per mol of fuel),

d particle diameter, Pox oxidizer partial pressure, Ea activation energy and Tp particle

temperature. For a given environment i.e. specific values of A r, AHox and Ea, Equations

5.1 and 5.2 can be used to calculate temperature history of a particle of given diameter d.

Note that for environments with several oxidizers, it is expected that the chemical term

can be treated as a sum of the respective terms given by Eq. 5.2 taken for individual

oxidizer species. Taking into account the selective heating of particles of around 3.4 µm

by a CO2 laser, these particles were expected to ignite first at the measured threshold

laser power. Thus, equations 5.1 and 5.2 were used to calculate threshold laser power to

best fit the experimental results in Figure 5.6 using A r and Ea as variable parameters for

each environment. The oxidation enthalpy, AHox, for each environment was calculated

assuming oxidation of Al to Al2O3, given by equations:
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When applied to different environments, this simple approach was capable of describing

the ignition threshold measurements for air and CO2/O2. However, this approach was

found to be problematic for other environments used in this study. It was observed that

the heat transfer model presented above predicted that particles (d = 3.4 µm) will be

heated to the temperature exceeding aluminum boiling point at the laser powers well

below the measured ignition threshold, even if no chemical heat generation was included

in the calculation, i.e., 0 = 0 . The results of this analysis are illustrated in Figure

5.7. Experimental points are shown for each environment separately. For each

environment, the dashed lines show the calculated laser powers required to achieve 2792

K (the aluminum boiling point) with no chemical reaction allowed. Reaching the boiling

of aluminum is considered to be an indicator of beginning of the vapor-phase

combustion; in other words if the particle temperature reaches 2792 K, it is assumed that

further analysis of heterogeneous reaction leading to ignition becomes irrelevant. Note

that mismatch between the experimental and calculated trends is increasing for higher

particle velocities. Further analysis of the calculation results shows that the slopes of the

calculated (shown in Figure 5.7 as dashed lines) 'laser threshold power vs particle

velocity' curves are strongly dependent on the size of the particles considered in the

calculation. Figure 5.8 shows calculated threshold power curves for inert heating in

H2O/N2 environment for different particle sizes. The slopes of the calculated curves

become close to that of the experimental trend for 13 µm particle size. Adding a non-zero
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Figure 5.7 Heat transfer analysis describing laser heating for different environments for
3.4 um Al particles compared to experimental laser power threshold required to observe
ignition. Dashed lines show the laser powers required to achieve Al boiling point (2792
K) with no chemical reaction allowed.
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Figure 5.8 Slope of threshold power Vs Particle velocity is proportional to particle size.
Calculation shows threshold power for inert heating in H2O/N2 environment for different
particle sizes.

chemical term in the calculations affects the slope of the predicted trend only slightly.The

primary effect is shifting the entire curve down. Thus, it can also be predicted that

particles around 13 1.1,m ignite at the threshold laser power. This analysis suggests that the

assumption of only 3.4 µm particles igniting at the threshold power holds true for air and

air / CO2 environments only. It appears that for other environments, for which predicted

threshold power for inert heating is higher than the experimental ignition thresholds,

particles of size larger than 3.4 µm were observed to ignite instead.

The analysis presented below shows that this situation is indeed possible despite

the fact that particles with diameter of 3.4 µm are the most eff¹cient absorbers of the CO2

laser energy. To understand this effect of environment, a simplif¹ed vapor phase droplet

diffusion combustion model is analyzed for metal droplet combustion. This model is

similar to the conventional particle combustion model; however the convective heat

transfer is calculated using the transition regime heat transfer model appropriate for

micron sized particles, for which Knudsen number 0.01<kn<0.1.
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5.6.1 Vapor Phase Combustion Droplet Model

To determine whether metal particles can achieve a vapor phase combustion regime, a

simplified steady state aluminum droplet vapor phase combustion model is formulated.

The model can predict if a vapor phase combustion is sustainable for a given particle size

and oxidizer environment considering single particle burning in a room temperature gas.

A spherical Al droplet at the aluminum boiling point (Tp = 2792 K) is assumed to be

surrounded by a spherical flame with the flame temperature TF>TP. The model is

intended to simulate the most favorable conditions for the vapor phase flame, so that

when it is predicted that the flame is not sustainable, this result can be treated as

conservative. To maximize the heat transfer from the flame to the particle surface and to

minimize heat losses to the room temperature environment (both to simulate most

favorable situation for vapor phase flame), the flame is assumed to be located right on the

droplet surface. The heat balance for the flame is estimated assuming convective heat

transfer to the particle, Qp , and losses to the surrounding environment, QE , as shown

schematically in Fgure 5.9. The heat input to the flame is from oxidation of the

evaporated aluminum, QC  . For a sustainable combustion of the metal droplet the

following inequality should be fulfilled:

The heat loss terms are calculated using Fuchs model described in Chapter 3 and can be

written as:
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where TF is flame temperature, TE is environment temperature and d is droplet diameter.

The heat input to the flame is a function of the rate of droplet evaporation, which itself

depends on the heat transferred from the flame to the droplet. Thus, Q C can be calculated

as:

(5.9)

where, Heva is the latent heat of evaporation for aluminum (so that the ratio of Qp and

Heva gives the number of moles of Al evaporated per unit time) and 41-1oxX is the heat of

oxidation of aluminum in the given environment. It is qualitatively clear that Equation

5.6 is easier to fulfill for higher flame temperatures, TF and greater value of 41-1ox. The

flame temperature is not known and needs to be assumed for a simplified analysis.

Figure 5.9 To calculate heat transfer from flame to particle the particle is assumed to be
surrounded by hot gas at the flame temperature TF (left sketch). To calculate heat loss
from flame to environment, the flame is assumed to sit directly on the particle surface and
lose heat to the environment temperature TE (right sketch).

As an example, Figure 5.10 shows the flame heat balance as a function of droplet

diameter for assumed flame temperature of 3200 K and 2900 K. The solid lines indicate

the total heat loss from the flame and the dashed line is the chemical heat released into

the flame due to Al oxidation in air. For the flame temperature of 2900 K, the chemical
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Figure 5.10 Flame heat balance as a function of droplet diameter for the flame
temperatures of 3200 and 2900 K. The solid lines indicate total heat loss from the flame
and the dashed lines show the chemical heat released into the flame due to Al oxidation
in air.

heat input is always less than the flame heat loss so that vapor phase combustion is

predicted to be impossible for any particle size. For the flame temperature of 3200 K, the

chemical heat input exceeds the losses for the droplet size of more than about 3.7 µm.

Thus, only the particles greater than 3.7 µm can burn in the vapor phase. This analysis

indicates that it is impossible to fully combust Al particle of any size because during

combustion, the droplet size will eventually reduce to below the critical droplet diameter.

This analysis applies strictly to single particle combustion in a cold environment while in

case of aerosols the flame heat loss to the environment is greatly reduced.
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Figure 5.11 (a) Critical diameter plotted as a function of flame temperature for different
environments; (b) adiabatic flame temperature of aluminum combustion plotted as a
function of equivalence ratio for different environments. The critical diameter
corresponding to the maximum flame temperature indicates the theoretical limit for vapor
phase particle combustion for each environment.

The size dependence of combustion sustainability is the direct effect of Fuchs

convection model which predicts lower Nusselt numbers for smaller particle. Thus for a

given flame temperature, particles below certain critical size are not able to sustain vapor

phase combustion. Note that, if flame heat losses were calculated using the continuum

convection. the particle size dependence would not be observed. Instead, a minimum

flame temperature needed to maintain vapor flame combustion would be predicted for all

particle sizes.

Figure 5.11 (a) plots the minimum critical particle diameter against the assumed

flame temperature for different oxidizer environments. It can be seen that higher flame

temperatures are required to sustain combustion for smaller particle in H2O and CO2

environments as compared to that in air. This effect of environment is attributed to a

higher oxidation enthalpy for aluminum in air, given by equations 5.3-5.5. The higher

oxidation enthalpy helps supporting greater flame heat losses with smaller metal

evaporation rates resulting in possibility of combustion for smaller particles. In addition,
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higher oxidation enthalpy results in higher flame temperatures. For a conservative

assumption, the flame temperature can be approximated by the adiabatic flame

temperature for different environments. Figure 5.11 (b) shows adiabatic flame

temperature for different environments as a function of equivalence ratio (equivalence

ratio more than one indicates a fuel rich mixture). These temperatures were predicted

using CEA code (CEA2, version 2, NASA Glenn) and considering constant pressure

combustion case. The adiabatic flame temperature correlates with the oxidation enthalpy

for different environments and peaks around equivalence ratio of 4. It should be noted

that the actual flame temperature will always be less than the adiabatic flame

temperature, and also the equivalence ratio existing in the flame is not a direct function of

the oxidizer mole fraction in the environment; rather it is determined by diffusion of

oxidizer and aluminum vapors to the flame. Horizontal lines connecting plots in Fig 5.11

(a) and 5.11 (b) show the critical particle sizes that can maintain the vapor phase flames

in their respective environments assuming the highest possible flame temperature. Figure

5.11 shows that particle with size around 3.4 µm (the most efficient absorber of the CO2

laser) and smaller are easily combustible in air which is why the model discussed above

describes successfully the experimental results in Figure 5.7 for air and CO2/02

environments. However, only much larger particles are predicted to be capable of

maintaining vapor phase flame in pure H2O and other environments. Note that the

environments used in these experiments contained only 35% of H2O with balance of N2

resulting in a lower adiabatic flame temperature and thus a more severe restriction on the

minimum particle size capable of achieving the vapor phase flame. Thus, the assumption

of the fixed 3.4 um particle size needs to be replaced and the sizes of particles ignited in



77

the CO2 laser ignition experiments in water or other oxidizer environments need to be

determined separately.

5.6.2 Arrhenius Model Parameter for Different Environments

Based on the above discussion, in spite of being the most efficient CO2 laser absorber, the

particle size of 3.4 µm may not always be the one observed to ignite at the threshold laser

power. Rather, the size of the particle observed to ignite becomes a function of the

environment. Thus, to extract Arrhenius model parameters for ignition kinetics i.e. A r and

Ea, the experimental trend for the threshold ignition power is fitted using Equation 5.1

and 5.2 considering Ar, Ea and d as adjustable parameters. Calculations were run to fit the

experimental data for different gradually increasing particle diameters, activation

energies and pre-exponents. Table 5.2 gives the best fit Arrhenius model parameters for

different environments. For mixed environments, Arrhenius parameters from pure

environments were used as per Equation 5.2 with contributions from different oxidizers

added taking into account their respective values of the partial pressures.

Figure 5.12 shows the calculated best fit curves using the Arrhenius parameters

(A r and Ea) and particle diameter as adjustable parameters. The best fit parameters are

tabulated in Table 5.2. The Arrhenius parameters are determined by processing results for

single oxidizer environments. As noted above, the pure environment kinetics was used to

process the results for dual oxidizer environments to determine the critical particle size

igniting at ignition threshold laser power. Figure 5.12 shows that the match between the

experimental and predicted laser ignition thresholds is equally good for pure oxidizers,

for which Arrhenius kinetics was selected directly and for mixed environments, for which
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Figure 5.12 Best f¹t for experimental results fitted using a simplified Arrhenius model.
Parameters extracted for pure environment tabulated in Table 5.2. Parameters for pure
environments are added taking into account respective partial pressures to describe the
mixed environments results.



Table 5.2 Arrhenius Parameters for Different Environments
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the Arrhenius kinetics obtained for individual oxidizers was used considering respective

particle pressures, according to Eq. (5.2).The processed results indicate that H2O is

associated with a faster ignition kinetics than O2 and CO2 environments. Note that it has

lowest oxidation enthalpy.

It is concluded that in H2O environment 12 µm sized particles ignite at the

ignition threshold laser power. The O2/H2O environments has slightly smaller size

particle of 9 µm burning at the threshold laser power which is reasonable considering that

the flame temperature is expected to be higher when oxygen is added as an oxidizer. For

other environments (O 2, CO2 and mixed O2/CO 2 oxidizers) the particle size is closer to

the 3.4 pm.

The activation energy determined from the pure environment processing predicts

the highest value for H2O and lowest for CO 2 . The pre-exponent, A, for H2O is very large

as compared to those for O2 and CO2 environments, which are relatively close to each

other.
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5.7 Summary

Aluminum particle laser ignition experiments were conducted in five different oxidizer

environments (Table 5.1). Three environments comprised of a single oxidizer i.e., O2,

CO2 and H2O and the other two were mixtures of two oxidizers i.e., H2O/O2 and CO2/O2.

CO2 laser ignition threshold power was measured for three different jet velocities for

each environment. Experimental results for pure environments were processed and

chemical kinetics (Arrhenius parameters, A, and Ea) for Al ignition in respective

environments were determined (Table 5.2). In spite of having higher measured threshold

CO2 laser power for ignition in the H2O environment, the processed results predict faster

kinetics for H2O as compared to other oxidizers. Kinetics for O2 and CO2 environments

are of similar order. The determined chemical kinetics for pure environments successfully

described the experimental results for mixed environments.

The approach described in Chapter 4 for processing the experimental results by

analyzing particle size of 3.4 µm only (because of the selective heating of this particle

size) was modified. Based on the analysis of heat transfer for a simplified particle

combustion configuration, it was established that there is a critical particle size below

which the vapor phase combustion of individual metal particles is impossible. This

conclusion is reached when transition heat transfer regime appropriate for micron-sized

particles is considered, as opposed to the continuum convection approach suitable for

particles with dimensions substantially greater than the mean free path of the molecule in

the surrounding gas. Thus, when particles with diameters smaller than this critical

dimension are heated by the CO 2 laser, self-sustained combustion in the vapor phase

cannot be established even after the particle temperatures reach the metal boiling point.
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This critical dimension depends on the oxidizing environment so that particles of

different sizes were ignited at the measured threshold laser powers in different

environments. Based on the processing of experimental data, it became possible to

determine which particle size was igniting for which environment. The processing

involved systematic analysis of the measured laser threshold energies taking into account

different particle diameters and different values of Arrhenius parameters for the chemical

heat release term. In environment with lower Al oxidation enthalpy, i.e., H2O, larger

particles were observed to ignite at the measured laser ignition threshold power.



CHAPTER 6

SUMMARY AND CONCLUSIONS

This work presents a new experimental technique and the corresponding heat transfer

model that enables one to quantify ignition kinetics for reactive particles heated at varied

heating rates approaching to or exceeding 10 6 K/s. Aluminum, the most common reactive

metal additive is used in this study.

The experimental technique uses a focused CO2 laser beam for heating micron-

sized particles in an oxidizing environment. Because the laser's wavelength (10.6 lam)

and particle diameters are comparable, the efficiency of the particle heating by the laser

beam is highly dependent on particle sizes. At the threshold laser power, only particles

with a very narrow range of sizes (around 3.4 µm) are heated efficiently and ignited.

Thus, one needs to analyze the transient heat transfer only for the particles of this specific

size, even though readily available poly-disperse powders are used in experiments. To

ignite the particles, a laminar aerosol jet is fed into a focused CO2 laser beam. The laser

power is increased until the ignition is observed. A separate visible laser sheet is used to

illuminate the particles in the jet for velocimetry. The particle speed could be readily

controlled in the range of 0.1 - 3 m/s. The experiment is conducted in an oxidizing

environment, so that if the laser power exceeds a specific threshold, the heated particles

of 3.4 diameter start igniting when they cross the laser beam. The experiment

involves measuring threshold laser ignition power and particle jet velocity. For any

oxidizing environment experiments were repeated for three different jet velocities. This

experimental data was processed to derive ignition kinetics of the environment.

82
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A single particle heat transfer model to process the experimental measurements

was developed. The developed heat transfer model includes radiation, convection in the

transition regime, and a detailed analysis of the heat transfer from a laser beam to metal

particles. A modified Fuchs transition regime heat transfer model was used to estimate

convective heat loss from the particle to surrounding environment. Absorption of laser

energy by the particle was calculated using Mie's scattering theory. The model

considered heating rates on the order of 10 6 K/s achieved in the experiment, which are

close to those occurring in many practical applications of metal-containing energetic

materials. The model was calibrated comparing the calculations and experimental data

acquired for spherical Al particles ignition in air, for which the ignition kinetics

parameters were determined elsewhere. Calibration involved determining the diameter of

the focal spot of the focused CO 2 laser beam. The developed experimental technique and

the heat transfer model enabled us to quantify the kinetics of ignition of aluminum

particle in a gaseous environment of interest.

The modified Fuchs' model for transition regime heat transfer was expanded to

account for the properties of diatomic gases as a function of temperature. The

dimensionless heat transfer coefficient, Nusselt number, was calculated as a function of

particle diameter using this expanded Fuchs' model. Heat transfer rates predicted by the

model are somewhat different from one another for the cases of particle heating and

cooling while the absolute values of the particle-gas temperature difference are the same.

This effect is not predicted by the continuum heat transfer calculations. It is observed that

the applicability of the continuum heat transfer model for description of heating or

cooling of particles of different sizes depends on pressure. For processes involving
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particle heating by laser, particle ignition and similar processes, the continuum heat

transfer model can be used for particles with diameters greater than about 10 um at 1 bar,

and for particles greater than about 1µm at 10 bar pressure. Transition heat transfer

model must always be used for analysis of heat transfer for nano-sized particles. For

calculating ignition delay, the continuum model remains useful for particle diameters

greater than, 18 um and 2 um for 1 and 10 bar, respectively. A usually poorly known

accommodation coefficient is observed to have a relatively small effect on the heat

transfer rate in the transition regime for metallic particles.

The developed CO2 laser ignition technique was used to ignite aluminum particle

in five different oxidizer environments. Three environments comprised of a single

oxidizer i.e., O2, CO2 and H2O and the other two were mixtures of two oxidizers i.e.,

H2O/O2 and CO2/O2. CO2 laser ignition threshold power was measured for three different

jet velocities for each environment.

The previous approach for processing the experimental results by analyzing

particle size of 3.4 urn only (because of the selective heating of this particle size) was

modified. Based on the analysis of heat transfer for a simplified particle combustion

configuration, it was established that there is a critical particle size below which the

vapor phase combustion of individual metal particles is impossible. This conclusion is

reached when transition heat transfer regime appropriate for micron-sized particles is

considered, as opposed to the continuum convection approach suitable for particles with

dimensions substantially greater than the mean free path of the molecule in the

surrounding gas. Thus, when particles with diameters smaller than this critical dimension

are heated by the CO2 laser, self-sustained combustion in the vapor phase cannot be
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established even after the particle temperatures reach the metal boiling point. This

critical dimension depends on the oxidizing environment so that particles of different

sizes were ignited at the measured threshold laser powers in different environments.

Based on the processing of experimental data, it became possible to determine which

particle size was igniting for which environment. The processing involved systematic

analysis of the measured laser threshold energies taking into account different particle

diameters and different values of Arrhenius parameters for the chemical heat release

term. In environment with lower Al oxidation enthalpy, i.e., H2O, larger particles were

observed to ignite at the laser ignition threshold power.

Experimental results for pure environments were processed and descriptive

chemical kinetics (Arrhenius parameters, A, and Ea) for Al ignition in respective

environments were determined. In spite of having higher measured threshold CO 2 laser

power for ignition in the 11 2O environment, the processed results predict faster kinetics

for H2O as compared to other oxidizers. Kinetic parameters for O2 and CO2 environments

are close to each other. The determined chemical kinetics for pure environments

successfully described the experimental results for mixed environments



APPENDIX A

PMT SIGNAL PEAK WIDTH DISTRIBUTION FOR DIFFERENT OXIDIZING

ENVIRONMENTS

Frequency distribution of PMT signal peak widths for different oxidizing environments is

described in Section 5.5. Example of each environment is presented here. Each sub figure

corresponds to a different CO 2 laser power used.

Peak Width, is

Figure A.1 Frequency distribution of peak widths produced by emission of Al particles
crossing the CO2 laser beam in air. The aluminum aerosol jet speed is 1.5 m/s.
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Figure A.2 Frequency distribution of peak widths produced by emission of Al particles
crossing the CO2 laser beam in CO2 . The aluminum aerosol jet speed is 0.4 m/s.
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Figure A.3 Frequency distribution of peak widths produced by emission of Al particles
crossing the CO2 laser beam in H2O. The aluminum aerosol jet speed is 0.86 m/s.
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Figure A.4 Frequency distribution of peak widths produced by emission of Al particles
crossing the CO2 laser beam in H2O/Air. The aluminum aerosol jet speed is 1.0 m/s.
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Figure A.5 Frequency distribution of peak widths produced by emission of Al particles
crossing the CO2 laser beam in CO2/O2. The aluminum aerosol jet speed is l.7 m/s.

All the collected data is provided in f¹les in the attached CD. The description of

the CD files is listed in Appendix C. These results can be found in the mixed

environment results folder.



APPENDIX B

FITTING PROCEDURE FOR DIFFERENT OXIDIZER ENVIRONMENTS

Fitting of the experimental results shown in Figure 5.12 is described here. Laser ignition

threshold is calculated using Equation 5.1 with respective terms calculated as described

in Chapter 5.

(B.1)

For any given environment, Equation B.1 has three unknowns i.e. particle

diameter, d and two Arrhenius parameters, activation energy, Ea and pre-exponent Z. A

3D domain is defined by the three unknowns with activation energy varied between 120

KJ/mol and 350 KJ/mol by a step size of 0.5 KJ/mol. Pre-exponent; Z is varied between

10 and 10 15 by a logarithmically increasing step size of 0.1x10 n, where n=1, 2, 3...14.

The particle diameter is varied by a step size of 1 um from 2 to 20 Laser ignition

threshold is calculated for each point in this 3D domain. For each point the fit quality is

calculated by R-squared value given by,

(B.2)

The variable point in 3D domain giving maximum R-squared value is the best fit

solution. For example, to find best fit solution for any environment, laser ignition
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threshold is calculated for the three different jet velocities (same as in experiments in this

environment) for each possible combination of Ea and Z (varied according to the step size

and range mentioned above), for a particle diameter d, say 2 um to begin with. For each

combination of Ea and Z, R-squared value is calculated using the experimental and

calculated laser ignition threshold. This calculation sequence is repeated for all diameter

in the range mentioned above with a step size of 1 um. The combination of d, Ea and Z

having maximum R-squared value is considered as the solution for Equation B.1. It

should be noted that each experimental point represent one independent equation i.e.

three independent equations are solved for three variables with this fitting procedure.

Table B.1 gives the solution of Equation B.1 for different environments. For

mixed environments Arrhenius parameters calculated from pure environment (single

oxidizer) results are used (as described by Equation 5.2). Thus, for mixed environments

Equation B.1 is solved only for particle diameter, d

Table B.1 Solution of Equation B.1 for Different Environments



APPENDIX C

DATA FILES

Experimental and calculation data files are provided in the attached CD. The list of the

folders and description of the files contained is given below:

Folder 	 Description

01-Thesis Document	 Complete thesis document as printed

02-Particle Heating by CO2 Laser	 Matlab model files for Al single particle
heating and ignition in air by CO2 laser.

03-Transition Regime Heat Transfer	 Matlab files for transition regime heat
transfer model.

04-Al Ignition in Mixed Env 	 Matlab files for Al droplet combustion
model, experimental data files and peak
width data files.
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