16 research outputs found

    Effects of Substrate Mechanics on Contractility of Cardiomyocytes Generated from Human Pluripotent Stem Cells

    Get PDF
    Human pluripotent stem cell (hPSC-) derived cardiomyocytes have potential applications in drug discovery, toxicity testing, developmental studies, and regenerative medicine. Before these cells can be reliably utilized, characterization of their functionality is required to establish their similarity to native cardiomyocytes. We tracked fluorescent beads embedded in 4.4–99.7 kPa polyacrylamide hydrogels beneath contracting neonatal rat cardiomyocytes and cardiomyocytes generated from hPSCs via growth-factor-induced directed differentiation to measure contractile output in response to changes in substrate mechanics. Contraction stress was determined using traction force microscopy, and morphology was characterized by immunocytochemistry for α-actinin and subsequent image analysis. We found that contraction stress of all types of cardiomyocytes increased with substrate stiffness. This effect was not linked to beating rate or morphology. We demonstrated that hPSC-derived cardiomyocyte contractility responded appropriately to isoprenaline and remained stable in culture over a period of 2 months. This study demonstrates that hPSC-derived cardiomyocytes have appropriate functional responses to substrate stiffness and to a pharmaceutical agent, which motivates their use in further applications such as drug evaluation and cardiac therapies

    3D Collagen Alignment Limits Protrusions to Enhance Breast Cancer Cell Persistence

    Get PDF
    Patients with mammographically dense breast tissue have a greatly increased risk of developing breast cancer. Dense breast tissue contains more stromal collagen, which contributes to increased matrix stiffness and alters normal cellular responses. Stromal collagen within and surrounding mammary tumors is frequently aligned and reoriented perpendicular to the tumor boundary. We have shown that aligned collagen predicts poor outcome in breast cancer patients, and postulate this is because it facilitates invasion by providing tracks on which cells migrate out of the tumor. However, the mechanisms by which alignment may promote migration are not understood. Here, we investigated the contribution of matrix stiffness and alignment to cell migration speed and persistence. Mechanical measurements of the stiffness of collagen matrices with varying density and alignment were compared with the results of a 3D microchannel alignment assay to quantify cell migration. We further interpreted the experimental results using a computational model of cell migration. We find that collagen alignment confers an increase in stiffness, but does not increase the speed of migrating cells. Instead, alignment enhances the efficiency of migration by increasing directional persistence and restricting protrusions along aligned fibers, resulting in a greater distance traveled. These results suggest that matrix topography, rather than stiffness, is the dominant feature by which an aligned matrix can enhance invasion through 3D collagen matrices

    Biallelic loss-of-function variants in <i>CACHD1 </i>cause a novel neurodevelopmental syndrome with facial dysmorphism and multisystem congenital abnormalities

    Get PDF
    Purpose We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. Methods We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. Results Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. Conclusion Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities

    Poly(ε-caprolactone) Nanofibers with a Self-Induced Nanohybrid Shish-Kebab Structure Mimicking Collagen Fibrils

    No full text
    A three-dimensional structure consisting of poly­(ε-caprolactone) (PCL) nanofibers covered by periodically spaced PCL crystal lamellae, a self-induced nanohybrid shish-kebab (SINSK) structure, was created using electrospinning followed by a self-induced crystallization. The resulting structure that resembles the nanotopography of natural collagen nanofibrils in the extracellular matrix (ECM) of human tissues could serve as a tissue engineering scaffold. The formation mechanism of the self-induced shish-kebab structure was investigated with real-time observation of the crystallization process. Electrospun polylactic acid (PLA)/PCL nanofibers were also employed as shish elements to study the effects of different shish materials. The results show that the geometric dimensions of the shish-kebabs are highly related to the initial concentration of PCL solution. The shish material played an important role in the creation of shish-kebab structure. Cell assays with NIH 3T3 ECACC fibroblasts suggest that the nanotopography of the nanofiber surface with kebab crystals that mimic collagen fibrils facilitated the cell attachment and spreading of 3T3 fibroblasts cells

    CellSIUS provides sensitive and specific detection of rare cell populations from complex single cell RNA-seq data

    No full text
    We develop CellSIUS (Cell Subtype Identification from Upregulated gene Sets) to fill a methodology gap for rare cell population identification for scRNA-seq data. CellSIUS outperforms existing algorithms for specificity and selectivity for rare cell types and their transcriptomic signature identification in synthetic and complex biological data. Characterization of a human pluripotent cell differentiation protocol recapitulating deep-layer corticogenesis using CellSIUS reveals unrecognized complexity in human stem cell-derived cellular populations. CellSIUS enables identification of novel rare cell populations and their signature genes providing the means to study those populations in vitro in light of their role in health and disease

    Genome-Scale CRISPR Screens Identify Human Pluripotency-Specific Genes

    No full text
    Summary: Human pluripotent stem cells (hPSCs) generate a variety of disease-relevant cells that can be used to improve the translation of preclinical research. Despite the potential of hPSCs, their use for genetic screening has been limited by technical challenges. We developed a scalable and renewable Cas9 and sgRNA-hPSC library in which loss-of-function mutations can be induced at will. Our inducible mutant hPSC library can be used for multiple genome-wide CRISPR screens in a variety of hPSC-induced cell types. As proof of concept, we performed three screens for regulators of properties fundamental to hPSCs: their ability to self-renew and/or survive (fitness), their inability to survive as single-cell clones, and their capacity to differentiate. We identified the majority of known genes and pathways involved in these processes, as well as a plethora of genes with unidentified roles. This resource will increase the understanding of human development and genetics. This approach will be a powerful tool to identify disease-modifying genes and pathways. : Ihry et al. develop a CRISPR/Cas9 genetic screening platform for hPSCs that enables unbiased genome-scale genetic screening. The platform exhibits high performance and accurately detects the dropout of essential genes. Furthermore, proof-of-concept screens exploit hPSC-specific phenotypes to identify regulators of fitness, survival after single-cell dissociation, and pluripotency. Keywords: CRISPR genome-wide screening, human pluripotent stem cells, iPSC, hESC, PAWR, PMAIP1, DD

    Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests

    No full text
    The mechanical properties of vascular tissues affect hemodynamics and can alter disease progression. The uniaxial tensile test is a simple and effective method for determining the stress-strain relationship in arterial tissue ex vivo. To enable calculation of strain, stretch can be measured directly with image tracking of markers on the tissue or indirectly from the distance between the grips used to hold the specimen. While the imaging technique is generally considered more accurate, it also requires more analysis, and the grip distance method is more widely used. The purpose of this study is to compare the stretch of the testing specimen calculated from the grip distance method to that obtained from the imaging method for canine descending aortas and large proximal pulmonary arteries. Our results showed a significant difference in stretch between the two methods; however, this difference was consistently less than 2%. Therefore, the grip distance method is an accurate approximation of the stretch in large elastic arteries in the uniaxial tensile test
    corecore