768 research outputs found

    Subjective wellbeing in the Indian general population: a validation study of the Personal Wellbeing Index

    Full text link
    © 2019, Springer Nature Switzerland AG. Purpose: The Personal Wellbeing Index (PWI) is a commonly used measure of life satisfaction that reflects a person’s level of subjective wellbeing (SWB). The present study aimed to establish the validity and reliability of the PWI in a large sample of Indian adults and describe their SWB. Methods: 2004 Indian adults completed a cross-sectional online survey, which was presented in English and included the PWI and demographic questions. The sample was split to assess the psychometric properties of the 7-item (n = 981) and 8-item (n = 937) versions of the PWI. Results: Both the 7- and 8-item versions of the PWI demonstrated adequate internal consistency (α =.89 and.88, respectively). The global means for both versions of the PWI (7-item = 74.43, 8-item = 73.82) were within the normative range for Western countries. Achieving in life had the lowest domain scores for both the 7-item (M = 70.51) and 8-item (M = 68.37) versions; the spirituality or religion domain had the highest domain score in the 8-item version (M = 78.84). Conclusion: The findings suggest that both the 7- and 8-item versions of the PWI are valid and reliable measures of life satisfaction for use in India. The global mean scores for both versions of the PWI were within the normative range for Western countries. In this study, Indians reported high levels of satisfaction with their spirituality or religion, suggesting this domain may be an important contributor of SWB; however, more research is needed to determine this

    Seroprevalence of West Nile, Rift Valley, and sandfly arboviruses in Hashimiah, Jordan.

    Get PDF
    We conducted a serosurvey among patients of a health center in Hashimiah, a Jordanian town of 30,000 inhabitants located near a wastewater treatment plant and its effluent channel. Serum samples from 261 patients >/=5 years of age were assessed for immunoglobulin G (IgG) and IgM antibodies against West Nile, sandfly Sicilian, sandfly Naples, and Rift Valley viruses; the seroprevalence of IgG antibodies was 8%, 47%, 30%, and 0%, respectively. Female participants were more likely to have been infected than male. Persons living within 2 km of the treatment plant were more likely to have been infected with West Nile (p=0.016) and sandfly Sicilian (p=0.010) viruses. Raising domestic animals within the house was a risk factor for sandfly Sicilian (p=0.003) but not for sandfly Naples virus (p=0.148). All serum samples were negative for IgM antibodies against the tested viruses. Our study is the first documentation of West Nile and sandfly viruses in Jordan and calls attention to the possible health hazards of living close to wastewater treatment plants and their effluent channels

    Genetic, serological and biochemical characterization of Leishmania tropica from foci in northern Palestine and discovery of zymodeme MON-307

    Get PDF
    Background Many cases of cutaneous leishmaniasis (CL) have been recorded in the Jenin District based on their clinical appearance. Here, their parasites have been characterized in depth. Methods Leishmanial parasites isolated from 12 human cases of CL from the Jenin District were cultured as promastigotes, whose DNA was extracted. The ITS1 sequence and the 7SL RNA gene were analysed as was the kinetoplast minicircle DNA (kDNA) sequence. Excreted factor (EF) serotyping and multilocus enzyme electrophoresis (MLEE) were also applied. Results This extensive characterization identified the strains as Leishmania tropica of two very distinct sub-types that parallel the two sub-groups discerned by multilocus microsatellite typing (MLMT) done previously. A high degree of congruity was displayed among the results generated by the different analytical methods that had examined various cellular components and exposed intra-specific heterogeneity among the 12 strains. Three of the ten strains subjected to MLEE constituted a new zymodeme, zymodeme MON-307, and seven belonged to the known zymodeme MON-137. Ten of the 15 enzymes in the profile of zymodeme MON-307 displayed different electrophoretic mobilities compared with the enzyme profile of the zymodeme MON-137. The closest profile to that of zymodeme MON-307 was that of the zymodeme MON-76 known from Syria. Strains of the zymodeme MON-307 were EF sub-serotype A2 and those of the zymodeme MON-137 were either A9 or A9B4. The sub-serotype B4 component appears, so far, to be unique to some strains of L. tropica of zymodeme MON-137. Strains of the zymodeme MON-137 displayed a distinctive fragment of 417 bp that was absent in those of zymodeme MON-307 when their kDNA was digested with the endonuclease RsaI. kDNA-RFLP after digestion with the endonuclease MboI facilitated a further level of differentiation that partially coincided with the geographical distribution of the human cases from which the strains came. Conclusions The Palestinian strains that were assigned to different genetic groups differed in their MLEE profiles and their EF types. A new zymodeme, zymodeme MON-307 was discovered that seems to be unique to the northern part of the Palestinian West Bank. What seemed to be a straight forward classical situation of L. tropica causing anthroponotic CL in the Jenin District might be a more complex situation, owing to the presence of two separate sub-types of L. tropica that, possibly, indicates two separate transmission cycles involving two separate types of phlebotomine sand fly vector

    Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Get PDF
    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner

    The hyperfine transition in light muonic atoms of odd Z

    Full text link
    The hyperfine (hf) transition rates for muonic atoms have been re-measured for select light nuclei, using neutron detectors to evaluate the time dependence of muon capture. For 19^{19}F Λ\Lambdah_{h} = 5.6 (2) μ\mus1^{-1} for the hf transition rate, a value which is considerably more accurate than previous measurements. Results are also reported for Na, Al, P, Cl, and K; that result for P is the first positive identification.Comment: 12 pages including 5 tables and 4 figures, RevTex, submitted to Phys. Rev.

    Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence

    Get PDF
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Metal halide perovskites have emerged as exceptional semiconductors for optoelectronic applications. Substitution of the monovalent cations has advanced luminescence yields and device efficiencies. Here, we control the cation alloying to enhance optoelectronic performance through alteration of the charge carrier dynamics in mixed-halide perovskites. In contrast to single-halide perovskites, we find high luminescence yields for photoexcited carrier densities far below solar illumination conditions. Using time-resolved spectroscopy we show that the charge carrier recombination regime changes from second to first order within the first tens of nanoseconds after excitation. Supported by microscale mapping of the optical bandgap, electrically gated transport measurements and first-principles calculations, we demonstrate that spatially varying energetic disorder in the electronic states causes local charge accumulation, creating p- and n-type photodoped regions, which unearths a strategy for efficient light emission at low charge-injection in solar cells and light-emitting diodes.S.F. acknowledges funding from the Studienstiftung des deutschen Volkes and EPSRC, as well as support from the Winton Programme for the Physics of Sustainability. S.M. acknowledges funding from an EPSRC studentship. M.A.-J. thanks Nava Technology Limited, Cambridge Materials Limited and EPSRC (grant number: EP/M005143/1) for their funding and technical support. S.P.S. acknowledges funding from the Royal Society Newton Fellowship and EPSRC through a program grant (EP/M005143/1). T.A.S.D. acknowledges the National University of Ireland (NUI) for a Travelling Studentship and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement number 756962). K.F. acknowledges funding from a George and Lilian Schiff Foundation Studentship, an EPSRC studentship and a scholarship from the Winton Programme for the Physics of Sustainability. E.R. acknowledges funding from an ERC starting grant (no. 804523). R.H.F. acknowledges support from the Simons Foundation (grant 601946). Research work in Mons was supported by the Fonds de la Recherche Scientifique de Belgique - Fund for Scientific Research (F.R.S.-FNRS) and the EU Marie-Curie IEF project ‘DAEMON’. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI). D.B. is an FNRS Research Director. S.D.S. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement number 756962), the Royal Society and Tata Group (UF150033). F.D. acknowledges funding from the Winton Programme for the Physics of Sustainability
    corecore