2,302 research outputs found
Recommended from our members
Archiving and disseminating integrative structure models.
Limitations in the applicability, accuracy, and precision of individual structure characterization methods can sometimes be overcome via an integrative modeling approach that relies on information from all available sources, including all available experimental data and prior models. The open-source Integrative Modeling Platform (IMP) is one piece of software that implements all computational aspects of integrative modeling. To maximize the impact of integrative structures, the coordinates should be made publicly available, as is already the case for structures based on X-ray crystallography, NMR spectroscopy, and electron microscopy. Moreover, the associated experimental data and modeling protocols should also be archived, such that the original results can easily be reproduced. Finally, it is essential that the integrative structures are validated as part of their publication and deposition. A number of research groups have already developed software to implement integrative modeling and have generated a number of structures, prompting the formation of an Integrative/Hybrid Methods Task Force. Following the recommendations of this task force, the existing PDBx/mmCIF data representation used for atomic PDB structures has been extended to address the requirements for archiving integrative structural models. This IHM-dictionary adds a flexible model representation, including coarse graining, models in multiple states and/or related by time or other order, and multiple input experimental information sources. A prototype archiving system called PDB-Dev ( https://pdb-dev.wwpdb.org ) has also been created to archive integrative structural models, together with a Python library to facilitate handling of integrative models in PDBx/mmCIF format
Tri-Rotor Propeller Design Concept, Optimization and Analysis of the Lift Efficiency During Hovering
This study introduces the simulation of a tri-rotor contra-rotating propeller for thrust force and hover lift efficiency during vertical take-off. Vertical take-off or landing is a method used by many aircraft and makes the vehicle more convenient and easier to use. The second rotor revolved in the opposite direction of the first and third rotors. The proposed multi-rotor system has NACA 0012 untwisted and symmetric airfoil and includes three rotors with two blades for each. The airflow analysis was optimized with computational fluid dynamics simulation by using different pitch combinations to achieve the highest hover lift efficiency with sufficient overall thrust value. The critical angle of attack for the chosen airfoil gave the boundary conditions for the pitch of rotors. The results showed us that the most efficient combinations for three rotors work better with an increase of pitch angle from top to bottom so that there is a difference of at least two degrees between propellers. Experiments with angles of attack within the boundary conditions showed that the blade combinations starting from three degrees and increasing values gave positive and adequate results in many cases. In addition, the results showed that a regular increase in the angle of attack does not relate to a regular increment in thrust force
Binding energy of an impurity in polar microspheres
We have examined the binding energy of a polaron bound to a hydrogenic donor impurity located in a spherical quantum dot by means of a variational technique for both finite and infinite potential models. The polaronic effect on the binding energy has been considered taking into account the ion-phonon coupling by using the Lee-Low-Pines variational method. The results we have obtained show that the binding energies are drastically affected by the dot radius, the potential barrier height and the polaronic effects.We have examined the binding energy of a polaron bound to a hydrogenic donor impurity located in a spherical quantum dot by means of a variational technique for both finite and infinite potential models. The polaronic effect on the binding energy has been considered taking into account the ion-phonon coupling by using the Lee-Low-Pines variational method. The results we have obtained show that the binding energies are drastically affected by the dot radius, the potential barrier height and the polaronic effects
Basic Considerations and Conceptual Design of a VSTOL Vehicle for Urban Transportation
On-demand air transport is an air-taxi service concept that should ideally use small, autonomous, Vertical Short Takeoff and Landing (VSTOL), “green”, battery-powered electric aircraft (eVSTOL). In addition, these aircraft should be competitive with modern helicopters, which are exceptionally reliable machines capable of the same task. For certification and economic purposes, mobile tilting parts should be avoided. The concept introduced in this paper simplifies the aircraft and makes it economical to build, certify and maintain. Four contrarotating propellers with eight electric motors are installed. During cruise, only two of the eight rotors available are not feathered and active. In the first step, a commercial, certified, jet-fueled APU and an available back-up battery are used. A second solution uses a CNG APU and the same back-up battery. Finally, the third solution has a high-density dual battery that is currently not available. A conceptual design is shown in this paper
Design Issues of Heavy Fuel APUs Derived from Automotive Turbochargers Part III: Combustor Design Improvement
Heavy fuel combustion problems with startup and operation may significantly reduce the microturbine efficiency in small APUs (Auxiliary Power Units). The use of commercial automotive-derived turbochargers solves the design problems of compressors and turbines but introduces large issues with combustors. The radial combustor proved to be the best design. Unfortunately, high-pressure injection is not practical for small units. For this reason, primary air and low-pressure fuel spray are heated and mixed. In any case, a high air swirl must achieve a satisfactory combustion efficiency. This swirl should be almost eliminated at the turbine intake. CFD analysis of the combustor design was, therefore, performed with several different geometries and design solutions. In the end, a large offset of the fresh pipe from the compressor proved to be the best solution for a high swirl in the combustion region. The combustion tends to eliminate the swirl, but an undesired tumble motion at the turbine intake takes place. To eliminate the tumble, two small fins were added to straighten the flow to the turbine
Simulation of Lattice Polymers with Multi-Self-Overlap Ensemble
A novel family of dynamical Monte Carlo algorithms for lattice polymers is
proposed. Our central idea is to simulate an extended ensemble in which the
self-avoiding condition is systematically weakened. The degree of the
self-overlap is controlled in a similar manner as the multicanonical ensemble.
As a consequence, the ensemble --the multi-self-overlap ensemble-- contains
adequate portions of self-overlapping conformations as well as higher energy
ones. It is shown that the multi-self-overlap ensemble algorithm reproduce
correctly the canonical averages at finite temperatures of the HP model of
lattice proteins. Moreover, it outperforms massively a standard multicanonical
algorithm for a difficult example of a polymer with 8-stickers. Alternative
algorithm based on exchange Monte Carlo method is also discussed.Comment: 5 Pages, 4 Postscript figures, uses epsf.st
- …