11 research outputs found

    Bridging Action Space Mismatch in Learning from Demonstrations

    Full text link
    Learning from demonstrations (LfD) methods guide learning agents to a desired solution using demonstrations from a teacher. While some LfD methods can handle small mismatches in the action spaces of the teacher and student, here we address the case where the teacher demonstrates the task in an action space that can be substantially different from that of the student -- thereby inducing a large action space mismatch. We bridge this gap with a framework, Morphological Adaptation in Imitation Learning (MAIL), that allows training an agent from demonstrations by other agents with significantly different morphologies (from the student or each other). MAIL is able to learn from suboptimal demonstrations, so long as they provide some guidance towards a desired solution. We demonstrate MAIL on challenging household cloth manipulation tasks and introduce a new DRY CLOTH task -- cloth manipulation in 3D task with obstacles. In these tasks, we train a visual control policy for a robot with one end-effector using demonstrations from a simulated agent with two end-effectors. MAIL shows up to 27% improvement over LfD and non-LfD baselines. It is deployed to a real Franka Panda robot, and can handle multiple variations in cloth properties (color, thickness, size, material) and pose (rotation and translation). We further show generalizability to transfers from n-to-m end-effectors, in the context of a simple rearrangement task

    PLGRIM: Hierarchical Value Learning for Large-scale Exploration in Unknown Environments

    Full text link
    In order for an autonomous robot to efficiently explore an unknown environment, it must account for uncertainty in sensor measurements, hazard assessment, localization, and motion execution. Making decisions for maximal reward in a stochastic setting requires value learning and policy construction over a belief space, i.e., probability distribution over all possible robot-world states. However, belief space planning in a large spatial environment over long temporal horizons suffers from severe computational challenges. Moreover, constructed policies must safely adapt to unexpected changes in the belief at runtime. This work proposes a scalable value learning framework, PLGRIM (Probabilistic Local and Global Reasoning on Information roadMaps), that bridges the gap between (i) local, risk-aware resiliency and (ii) global, reward-seeking mission objectives. Leveraging hierarchical belief space planners with information-rich graph structures, PLGRIM addresses large-scale exploration problems while providing locally near-optimal coverage plans. We validate our proposed framework with high-fidelity dynamic simulations in diverse environments and on physical robots in Martian-analog lava tubes

    Secondary cytogenetic abnormalities in core-binding factor AML harboring inv(16) vs t(8;21)

    Get PDF
    Patients with core-binding factor (CBF) acute myeloid leukemia (AML), caused by either t(8; 21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22), have higher complete remission rates and longer survival than patients with other subtypes of AML. However, similar to 40% of patients relapse, and the literature suggests that patients with inv(16) fare differently from those with t(8;21). We retrospectively analyzed 537 patients with CBF-AML, focusing on additional cytogenetic aberrations to examine their impact on clinical outcomes. Trisomies of chromosomes 8, 21, or 22 were significantly more common in patients with inv(16)/t(16;16): 16% vs 7%, 6% vs 0%, and 17% vs 0%, respectively. In contrast, del(9q) and loss of a sex chromosome were more frequent in patients with t(8;21): 15% vs 0.4% for del(9q), 37% vs 0% for loss of X in females, and 44% vs 5% for loss of Y in males. Hyperdiploidy was more frequent in patients with inv(16) (25% vs 9%, whereas hypodiploidy was more frequent in patients with t(8;21) (37% vs 3%. In multivariable analyses (adjusted for age, white blood counts at diagnosis, and KIT mutation status), trisomy 8 was associated with improved overall survival (OS) in inv(16), whereas the presence of other chromosomal abnormalities (not trisomy 8) was associated with decreased OS. In patients with t(8;21), hypodiploidy was associated with improved disease-free survival; hyperdiploidy and del(9q) were associated with improved OS. KIT mutation (either positive or not tested, compared with negative) conferred poor prognoses in univariate analysis only in patients with t(8;21)

    NeBula: Team CoSTAR's robotic autonomy solution that won phase II of DARPA Subterranean Challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR¿s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.The work is partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004), and Defense Advanced Research Projects Agency (DARPA)

    Core-binding factor acute myeloid leukemia with t(8;21) Risk factors and a novel scoring system (I-CBFit)

    Get PDF
    Background: Although the prognosis of core-binding factor (CBF) acute myeloid leukemia (AML) is better than other subtypes of AML, 30% of patients still relapse and may require allogeneic hematopoietic cell transplantation (alloHCT). However, there is no validated widely accepted scoring system to predict patient subsets with higher risk of relapse. Methods: Eleven centers in the US and Europe evaluated 247 patients with t(8;21) (q22;q22). Results: Complete remission (CR) rate was high (92.7%), yet relapse occurred in 27.1% of patients. A total of 24.7% of patients received alloHCT. The median diseasefree (DFS) and overall (OS) survival were 20.8 and 31.2 months, respectively. Age, KIT D816V mutated (11.3%) or nontested (36.4%) compared with KIT D816V wild type (52.5%), high white blood cell counts (WBC), and pseudodiploidy compared with hyper- or hypodiploidy were included in a scoring system (named I-CBFit). DFS rate at 2 years was 76% for patients with a low-risk I-CBFit score compared with 36% for those with a high-risk I-CBFit score (P <0.0001). Low- vs high-risk OS at 2 years was 89% vs 51% (P <0.0001). Conclusions: I-CBFit composed of readily available risk factors can be useful to tailor the therapy of patients, especially for whom alloHCT is not need in CR1 (ie, patients with a low-risk score)
    corecore