5 research outputs found

    Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading

    No full text
    Skeletal loading and unloading has a pronounced impact on bone remodeling, a process also regulated by insulin-like growth factor 1 (IGF-1) signaling. Skeletal unloading leads to resistance to the anabolic effect of IGF-1, while reloading after unloading restores responsiveness to IGF-1. However, a direct study of the importance of IGF-1 signaling in the skeletal response to mechanical loading remains to be tested. In this study, we assessed the skeletal response of osteoblast-specific Igf-1 receptor deficient (Igf-1r-/- ) mice to unloading and reloading. The mice were hindlimb unloaded for 14 days and then reloaded for 16 days. Igf-1r-/- mice displayed smaller cortical bone and diminished periosteal and endosteal bone formation at baseline. Periosteal and endosteal bone formation decreased with unloading in Igf-1r+/+ mice. However, the recovery of periosteal bone formation with reloading was completely inhibited in Igf-1r-/- mice, although reloading-induced endosteal bone formation was not hampered. These changes in bone formation resulted in the abolishment of the expected increase in total cross-sectional area with reloading in Igf-1r-/- mice compared to the control mice. These results suggest that the Igf-1r in mature osteoblasts has a critical role in periosteal bone formation in the skeletal response to mechanical loading

    The role of oxygen during fracture healing

    No full text
    Oxygen affects the activity of multiple skeletogenic cells and is involved in many processes that are important for fracture healing. However, the role of oxygen in fracture healing has not been fully studied. Here we systematically examine the effects of oxygen tension on fracture healing and test the ability of hyperoxia to rescue healing defects in a mouse model of ischemic fracture healing. Mice with tibia fracture were housed in custom-built gas chambers and groups breathed a constant atmosphere of 13% oxygen (hypoxia), 21% oxygen (normoxia), or 50% oxygen (hyperoxia). The influx of inflammatory cells to the fracture site, stem cell differentiation, tissue vascularization, and fracture healing were analyzed. In addition, the efficacy of hyperoxia (50% oxygen) as a treatment regimen for fracture nonunion was tested. Hypoxic animals had decreased tissue vascularity, decreased bone formation, and delayed callus remodeling. Hyperoxia increased tissue vascularization, altered fracture healing in un-complicated fractures, and improved bone repair in ischemia-induced delayed fracture union. However, neither hypoxia nor hyperoxia significantly altered chondrogenesis or osteogenesis during early stages of fracture healing, and infiltration of macrophages and neutrophils was not affected by environmental oxygen after bone injury. In conclusion, our results indicate that environmental oxygen levels affect tissue vascularization and fracture healing, and that providing oxygen when fractures are accompanied by ischemia may be beneficial
    corecore