22 research outputs found
Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest
Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities 5 found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughout DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of 10 members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, 15 fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces, suggesting that inputs of fungi to the atmosphere are from local, rather than distant, sources. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, 20 may be abundant members of active atmospheric fungal communities over the forest canopy
Hillslope-scale experiment demonstrates the role of convergence during two-step saturation
Subsurface flow and storage dynamics at hillslope scale are difficult to ascertain, often in part due to a lack of sufficient high-resolution measurements and an incomplete understanding of boundary conditions, soil properties, and other environmental aspects. A continuous and extreme rainfall experiment on an artificial hillslope at Biosphere 2's Landscape Evolution Observatory (LEO) resulted in saturation excess overland flow and gully erosion in the convergent hillslope area. An array of 496 soil moisture sensors revealed a two-step saturation process. First, the downward movement of the wetting front brought soils to a relatively constant but still unsaturated moisture content. Second, soils were brought to saturated conditions from below in response to rising water tables. Convergent areas responded faster than upslope areas, due to contributions from lateral subsurface flow driven by the topography of the bottom boundary, which is comparable to impermeable bedrock in natural environments. This led to the formation of a groundwater ridge in the convergent area, triggering saturation excess runoff generation. This unique experiment demonstrates, at very high spatial and temporal resolution, the role of convergence on subsurface storage and flow dynamics. The results bring into question the representation of saturation excess overland flow in conceptual rainfall-runoff models and land-surface models, since flow is gravity-driven in many of these models and upper layers cannot become saturated from below. The results also provide a baseline to study the role of the co-evolution of ecological and hydrological processes in determining landscape water dynamics during future experiments in LEO
Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America
Recommended from our members
Calculating canopy stomatal conductance from eddy covariance measurements, in light of the energy budget closure problem
Canopy stomatal conductance is commonly estimated from eddy covariance measurements of the latent heat flux (LE) by inverting the Penman-Monteith equation. That method ignores eddy covariance measurements of the sensible heat flux (H) and instead calculates H implicitly as the residual of all other terms in the site energy budget. Here we show that canopy stomatal conductance is more accurately calculated from eddy covariance (EC) measurements of both H and LE using the flux-gradient equations that define conductance and underlie the Penman-Monteith equation, especially when the site energy budget fails to close due to pervasive biases in the eddy fluxes and/or the available energy. The flux-gradient formulation dispenses with unnecessary assumptions, is conceptually simpler, and is as or more accurate in all plausible scenarios. The inverted Penman-Monteith equation, on the other hand, contributes substantial biases and erroneous spatial and temporal patterns to canopy stomatal conductance, skewing its relationships with drivers such as light and vapor pressure deficit. © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees
Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P50), leaf turgor loss point (TLP), cellular osmotic potential (πo), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P50, TLP, and πo, but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and drought-intolerant tropical tree species promises to facilitate a much-needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forestsNatural Environment Research Council,
Grant/Award Number: NE/J011002/1;
Australian Research Council, Grant/Award
Number: FT110100457; National Science
Foundation, Grant/Award Number: DEB1110540, OISE-0730305; Gordon and Betty
Moore Foundation; Department of
Organismic and Evolutionary Biology,
Harvard University; NGEE-Tropics grant,
Biological and Environmental Research
program; US Department of Energ
Factors Controlling Long- and Short-Term Sequestration of Atmospheric CO2 in a Mid-latitude Forest
Net uptake of carbon dioxide (CO2) measured by eddy covariance in a 60- to 80-year-old forest averaged 2.0 ± 0.4 megagrams of carbon per hectare per year during 1993 to 2000, with interannual variations exceeding 50%. Biometry indicated storage of 1.6 ± 0.4 megagrams of carbon per hectare per year over 8 years, 60% in live biomass and the balance in coarse woody debris and soils, confirming eddy-covariance results. Weather and seasonal climate (e.g., variations in growing-season length or cloudiness) regulated seasonal and interannual fluctuations of carbon uptake. Legacies of prior disturbance and management, especially stand age and composition, controlled carbon uptake on the decadal time scale, implying that eastern forests could be managed for sequestration of carbon
Recommended from our members
Factors Controlling Long- and Short-Term Sequestration of Atmospheric CO2 in a Mid-latitude Forest
Net uptake of carbon dioxide (CO2) measured by eddy covariance in a 60- to 80-year-old forest averaged 2.0 ± 0.4 megagrams of carbon per hectare per year during 1993 to 2000, with interannual variations exceeding 50%. Biometry indicated storage of 1.6 ± 0.4 megagrams of carbon per hectare per year over 8 years, 60% in live biomass and the balance in coarse woody debris and soils, confirming eddy-covariance results. Weather and seasonal climate (e.g., variations in growing-season length or cloudiness) regulated seasonal and interannual fluctuations of carbon uptake. Legacies of prior disturbance and management, especially stand age and composition, controlled carbon uptake on the decadal time scale, implying that eastern forests could be managed for sequestration of carbon