5,119 research outputs found
Polycyclic Aromatic Hydrocarbon in the Central Region of the Seyfert 2 Galaxy NGC1808
We present mid infrared (MIR) spectra of the Seyfert 2 (Sy 2) galaxy NGC
1808, obtained with the Gemini's Thermal-Region Camera Spectrograph (T-ReCS) at
a spatial resolution of 26 pc. The high spatial resolution allowed us to detect
bright polycyclic aromatic hydrocarbons (PAHs) emissions at 8.6micron and
11.3micron in the galaxy centre (26 pc) up to a radius of 70 pc from the
nucleus. The spectra also present [Ne ii]12.8micron ionic lines, and H2
S(2)12.27micron molecular gas line. We found that the PAHs profiles are similar
to Peeters's A class, with the line peak shifted towards the blue. The
differences in the PAH line profiles also suggests that the molecules in the
region located 26 pc NE of the nucleus are more in the neutral than in the
ionised state, while at 26 pc SW of the nucleus, the molecules are mainly in
ionised state. After removal of the underlying galaxy contribution, the nuclear
spectrum can be represented by a Nenkova's clumpy torus model, indicating that
the nucleus of NGC 1808 hosts a dusty toroidal structure with an angular cloud
distribution of sigma = 70degree, observer's view angle i = 90degree, and an
outer radius of R0 = 0.55 pc. The derived column density along the line of
sight is NH = 1.5 x 10^24 cm-2, which is sufficient to block the hard radiation
from the active nucleus, and would explain the presence of PAH molecules near
to the NGC 1808's active nucleus.Comment: Accepted by MNRAS 2012 December
Relativistic free-particle quantization on the light-front: New aspects
We use the light-front machinery to study the behavior of a relativistic free
particle and obtain the quantum commutation relations from the classical
Poisson brackets. We argue that the usual projection onto the light-front
coordinates for these from the covariant commutation ralations does not
reproduce the expected results.Comment: To appear in the proceedings "IX Hadron Physics and VII Relativistic
Aspects of Nuclear Physics: A Joint Meeting on QCD and QGP, Hadron
Physics-RANP,2004,Angra dos Reis, Rio de Janeiro,Brazi
Satellites of Simulated Galaxies: survival, merging, and their relation to the dark and stellar halos
We study the population of satellite galaxies formed in a suite of
N-body/gasdynamical simulations of galaxy formation in a LCDM universe. We find
little spatial or kinematic bias between the dark matter and the satellite
population. The velocity dispersion of the satellites is a good indicator of
the virial velocity of the halo: \sigma_{sat}/V_{vir}=0.9 +/- 0.2. Applied to
the Milky Way and M31 this gives V_{vir}^{MW}=109 +/- 22$ km/s and
V_{vir}^{M31} = 138 +/- 35 km/s, respectively, substantially lower than the
rotation speed of their disk components. The detailed kinematics of simulated
satellites and dark matter are also in good agreement. By contrast, the stellar
halo of the simulated galaxies is kinematically and spatially distinct from the
population of surviving satellites. This is because the survival of a satellite
depends on mass and on time of accretion; surviving satellites are biased
toward low-mass systems that have been recently accreted by the galaxy. Our
results support recent proposals for the origin of the systematic differences
between stars in the Galactic halo and in Galactic satellites: the elusive
``building blocks'' of the Milky Way stellar halo were on average more massive,
and were accreted (and disrupted) earlier than the population of dwarfs that
has survived self-bound until the present.Comment: 13 pages, 11 figures, MNRAS in press. Accepted version with minor
changes. Version with high resolution figures available at:
http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm
Surprises in the relativistic free-particle quantization on the light-front
We use the light front ``machinery'' to study the behavior of a relativistic
free particle and obtain the quantum commutation relations from the classical
Poisson brackets. We argue that their usual projection onto the light-front
coordinates from the covariant commutation relations show that there is an
inconsistency in the expected correlation between canonically conjugate
variables ``time'' and ``energy''. Moreover we show that this incompatibility
originates from the very definition of the Poisson brackets that is employed
and present a simple remedy to this problem and envisages a profound physical
implication on the whole process of quantization.Comment: 13 page
Cosmic M\'enage \`a Trois: The Origin of Satellite Galaxies On Extreme Orbits
We examine the orbits of satellite galaxies identified in a suite of
N-body/gasdynamical simulations of the formation of galaxies in a LCDM
universe. Most satellites follow conventional orbits; after turning around,
they accrete into their host halo and settle on orbits whose apocentric radii
are steadily eroded by dynamical friction. However, a number of outliers are
also present, we find that ~1/3 of satellites identified at are on
unorthodox orbits, with apocenters that exceed their turnaround radii. This
population of satellites on extreme orbits consists typically of the faint
member of a satellite pair that has been ejected onto a highly-energetic orbit
during its first approach to the primary. Since the concurrent accretion of
multiple satellite systems is a defining feature of hierarchical models of
galaxy formation, we speculate that this three-body ejection mechanism may be
the origin of (i) some of the newly discovered high-speed satellites around M31
(such as Andromeda XIV); (ii) some of the distant fast-receding Local Group
members, such as Leo I; and (iii) the oddly isolated dwarf spheroidals Cetus
and Tucana in the outskirts of the Local Group. Our results suggest that care
must be exercised when using the orbits of the most weakly bound satellites to
place constraints on the total mass of the Local Group.Comment: 10 pages, 6 figures, MNRAS in press. Accepted version with minor
changes. Version with high resolution figures available at:
http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm
Counterrotating Stars in Simulated Galaxy Disks
Counterrotating stars in disk galaxies are a puzzling dynamical feature whose
origin has been ascribed to either satellite accretion events or to disk
instabilities triggered by deviations from axisymmetry. We use a cosmological
simulation of the formation of a disk galaxy to show that counterrotating
stellar disk components may arise naturally in hierarchically-clustering
scenarios even in the absence of merging. The simulated disk galaxy consists of
two coplanar, overlapping stellar components with opposite spins: an inner
counterrotating bar-like structure made up mostly of old stars surrounded by an
extended, rotationally-supported disk of younger stars. The opposite-spin
components originate from material accreted from two distinct filamentary
structures which at turn around, when their net spin is acquired, intersect
delineating a "V"-like structure. Each filament torques the other in opposite
directions; the filament that first drains into the galaxy forms the inner
counterrotating bar, while material accreted from the other filament forms the
outer disk. Mergers do not play a substantial role and most stars in the galaxy
are formed in situ; only 9% of all stars are contributed by accretion events.
The formation scenario we describe here implies a significant age difference
between the co- and counterrotating components, which may be used to
discriminate between competing scenarios for the origin of counterrotating
stars in disk galaxies.Comment: 7 pages, 7 figures. Accepted for publication in MNRA
Comparative Genome Viewer
The amount of information about genomes, both in the form of complete sequences and annotations, has been exponentially increasing in the last few years. As a result there is the need for tools providing a graphical representation of such information that should be comprehensive and intuitive. Visual representation is especially important in the comparative genomics field since it should provide a combined view of data belonging to different genomes. We believe that existing tools are limited in this respect as they focus on a single genome at a time (conservation histograms) or compress alignment representation to a single dimension. We have therefore developed a web-based tool called Comparative Genome Viewer (CGV): it integrates a bidimensional representation of alignments between two regions, both at small and big scales, with the richness of annotations present in other genome browsers. We give access to our system through a web-based interface that provides the user with an interactive representation that can be updated in real time using the mouse to move from region to region and to zoom in on intereseting details
- …