6,028 research outputs found
Photonic circuits for generating modal, spectral, and polarization entanglement
We consider the design of photonic circuits that make use of Ti:LiNbO
diffused channel waveguides for generating photons with various combinations of
modal, spectral, and polarization entanglement. Down-converted photon pairs are
generated via spontaneous optical parametric down-conversion (SPDC) in a
two-mode waveguide. We study a class of photonic circuits comprising: 1) a
nonlinear periodically poled two-mode waveguide structure, 2) a set of
single-mode and two-mode waveguide-based couplers arranged in such a way that
they suitably separate the three photons comprising the SPDC process, and, for
some applications, 3) a holographic Bragg grating that acts as a dichroic
reflector. The first circuit produces frequency-degenerate down-converted
photons, each with even spatial parity, in two separate single-mode waveguides.
Changing the parameters of the elements allows this same circuit to produce two
nondegenerate down-converted photons that are entangled in frequency or
simultaneously entangled in frequency and polarization. The second photonic
circuit is designed to produce modal entanglement by distinguishing the photons
on the basis of their frequencies. A modified version of this circuit can be
used to generate photons that are doubly entangled in mode number and
polarization. The third photonic circuit is designed to manage dispersion by
converting modal, spectral, and polarization entanglement into path
entanglement
Study on the effect of wormseed plants; artemisia cina L. and chamomile; matricaria chamomilla L. on Growth Parameters and Immune Response of African Catfish, Clarias gariepinus
A number of 420 fingerlings of catfish were used to examine the effect of wormseed plants and chamomile on the growth parameters and on non-specific immune response of the African catfish; Clarias gariepinus. Both types of herbs were used in rates of 1, 3 and 5% with 3 replicates per each of the 6 treatments. The 7th treatment was kept as a control group. The experimented catfish were fed with the 7 examined diets in the rate of 3% of fish biomass for 1 month. Different growth parameters as well as blood parameters were estimated to evaluate the growth performance and immune response of the experimented catfish. Results revealed that wormseed plants Artemisia cina L. in the rate of 3 and 5% and chamomile Matricaria chamomilla. L. in the rate of 1% showed the best figures of growth parameters as well as immune response parameters of the examined catfish
Quantum Holography
We propose to make use of quantum entanglement for extracting holographic
information about a remote 3-D object in a confined space which light enters,
but from which it cannot escape. Light scattered from the object is detected in
this confined space entirely without the benefit of spatial resolution. Quantum
holography offers this possibility by virtue of the fourth-order quantum
coherence inherent in entangled beams.Comment: 7 pages, submitted to Optics Expres
Role of entanglement in two-photon imaging
The use of entangled photons in an imaging system can exhibit effects that
cannot be mimicked by any other two-photon source, whatever the strength of the
correlations between the two photons. We consider a two-photon imaging system
in which one photon is used to probe a remote (transmissive or scattering)
object, while the other serves as a reference. We discuss the role of
entanglement versus correlation in such a setting, and demonstrate that
entanglement is a prerequisite for achieving distributed quantum imaging.Comment: 15 pages, 2 figure
Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion
We examine the modal, spectral, and polarization entanglement properties of photon pairs generated in a nonlinear periodically poled two-mode waveguide (one-dimensional planar or two-dimensional circular) via nondegenerate spontaneous parametric down-conversion. Any of the possible degrees of freedom-mode number, frequency, or polarization-can be used to distinguish the down-converted photons while the others serve as attributes of entanglement. Distinguishing the down-converted photons based on their mode numbers enables us to efficiently generate spectral or polarization entanglement that is either narrowband or broadband. On the other hand, when the generated photons are distinguished by their frequencies in a type-0 process, modal entanglement turns out to be an efficient alternative to polarization entanglement. Moreover, modal entanglement in type-II down-conversion may be used to generate a doubly entangled state in frequency and polarization
Peran Kelompok Nelayan dalam Kegiatan Pariwisata terhadap Peluang Usaha dan Kerja
The purpose of this study was to analyze the role of fishermen in the tourism activities of the business and employment opportunities. This study also examines the relationship between the characteristics of the group members and group elements with the role of fishermen, where the research was conducted on a group cruise boat belonging to the Organization of Boat Cruise Pangandaran (OBCP) Pangandaran Village. On testing the characteristics of group members to the role of fishermen, there was a real relationship. In the test group elements with the role of fishermen, there was a real relationship unless the relationship norms/rules of the group with the group supporting service units were not real relationships. Finally, in testing the role of fishermen and businesses and employment opportunities, there was a real relationship, this was evidenced by the presence of several members of the group who has other business other than as a fisherman or a boat cruise as homestays, restaurants and stalls
Synthesis and Analysis of Entangled Photonic Qubits in Spatial-Parity Space
We present the novel embodiment of a photonic qubit that makes use of one
continuous spatial degree of freedom of a single photon and relies on the the
parity of the photon's transverse spatial distribution. Using optical
spontaneous parametric downconversion to produce photon pairs, we demonstrate
the controlled generation of entangled-photon states in this new space.
Specifically, two Bell states, and a continuum of their superpositions, are
generated by simple manipulation of a classical parameter, the optical-pump
spatial parity, and not by manipulation of the entangled photons themselves. An
interferometric device, isomorphic in action to a polarizing beam splitter,
projects the spatial-parity states onto an even--odd basis. This new physical
realization of photonic qubits could be used as a foundation for future
experiments in quantum information processing.Comment: 6 pages, 5 figures, submitted to PR
Interferometric control of the photon-number distribution
We demonstrate deterministic control over the photon-number distribution by
interfering two coherent beams within a disordered photonic lattice. By
sweeping a relative phase between two equal-amplitude coherent fields with
Poissonian statistics that excite adjacent sites in a lattice endowed with
disorder-immune chiral symmetry, we measure an output photon-number
distribution that changes periodically between super-thermal and sub-thermal
photon statistics upon ensemble averaging. Thus, the photon-bunching level is
controlled interferometrically at a fixed mean photon-number by gradually
activating the excitation symmetry of the chiral-mode pairs with structured
coherent illumination and without modifying the disorder level of the random
system itself
Entangled-Photon Imaging of a Pure Phase Object
We demonstrate experimentally and theoretically that a coherent image of a
pure phase object may be obtained by use of a spatially incoherent illumination
beam. This is accomplished by employing a two-beam source of entangled photons
generated by spontaneous parametric down-conversion. Though each of the beams
is, in and of itself, spatially incoherent, the pair of beams exhibits
higher-order inter-beam coherence. One of the beams probes the phase object
while the other is scanned. The image is recorded by measuring the photon
coincidence rate using a photon-counting detector in each beam. Using a
reflection configuration, we successfully imaged a phase object implemented by
a MEMS micro-mirror array. The experimental results are in accord with
theoretical predictions.Comment: 11 pages, 3 figures, submittedto Phys. Rev. Let
- …