11 research outputs found

    Tropism and neutralisation studies on bat influenza H17N10

    Get PDF
    The diversity of subtypes within Influenza A recently expanded with identification of H17N10 and H18N11 from bats. To study the tropism and zoonotic potential of these viruses, we successfully produced lentiviral pseudotypes bearing haemagglutinin H17 and neuraminidase N10. We investigated a range of cell lines from different species for their susceptibility to infection by these pseudotypes and show that a number of human haematopoietic cancer cell lines and the canine kidney MDCK II (but not MDCK I) cells are susceptible. Using microarrays and qRT-PCR we show that the dog leukocyte antigen DLA-DRA mRNA is over expressed in late passaged parental MDCK and commercial MDCK II cells, compared to early passaged parental MDCK and MDCK I cells, respectively. The human orthologue HLA-DRA encodes the alpha subunit of the MHC class II HLA-DR antigen-binding heterodimer. Small interfering RNA- or neutralizing antibody-targeting HLA-DRA, drastically reduced the susceptibility of Raji B cells to H17-PV. Conversely, over expression of HLA-DRA and its paralogue HLA-DRB1 on the surface of unsusceptible HEK293T/17 cells conferred susceptibility to H17-PV. The identification of HLA-DR as an H17N10 entry mediator will contribute to understanding the tropism of the virus and help to elucidate its zoonotic transmission. We also show that H17 pseudotypes can be efficiently neutralised by the broadly-neutralizing HA2 stalk monoclonal antibodies CR9114 and FI6. The lentiviral pseudotype system is a useful research tool, amenable for investigation of bat influenza tropism, restriction and pandemic preparedness, without safety issues of producing a replication-competent virus, to which the human population is naïve

    Global Transcriptional Profile of Mycobacterium tuberculosis during THP-1 Human Macrophage Infection▿ †

    No full text
    During lung infection, Mycobacterium tuberculosis resides in macrophages and subverts the bactericidal mechanisms of these professional phagocytes. Comprehension of this host-pathogen relationship is fundamental for the development of new therapies to cure and prevent tuberculosis. In this work, we analyzed the transcriptional profile of M. tuberculosis infecting human macrophage-like THP-1 cells in order to identify putative bacterial pathogenic factors that can be relevant for the intracellular survival of M. tuberculosis. We compared the gene expression profile of M. tuberculosis H37Rv after 4 h and 24 h of infection of human macrophage-like THP-1 cells with the gene expression profile of the strain growing exponentially in broth cultures. We found 585 genes expressed differentially by intracellular M. tuberculosis. An analysis of the gene expression profile of M. tuberculosis inside THP-1 cells suggests the perturbation of the cell envelope as a major intracellular stress inside THP-1 macrophages

    Mycobacterium tuberculosis sigma factor E regulon modulates the host inflammatory response

    Get PDF
    Mycobacterium tuberculosis survives in macrophages and usually subverts the bactericidal mechanisms of these phagocytes. The understanding of this host-pathogen interaction is relevant for the development of new treatments for tuberculosis. The adaptation of M. tuberculosis to intracellular life depends on its ability to regulate the expression of its genes. Sigma factors are important bacterial transcription activators that bind to the RNA polymerase and give it promoter specificity. Sigma factor E (SigE) controls the expression of genes that are essential for virulence. We have identified the SigE regulon during infection of macrophages, and we analyzed the impact of this regulon on the transcriptional response of phagocytes. Our results indicate that SigE regulates the expression of genes involved in the maintenance of M. tuberculosis cell envelope integrity and function during macrophage infection. Analysis of the phagocytes' transcriptional response indicates that the SigE regulon is involved in the modulation of the inflammatory response. © 2008 by the Infectious Diseases Society of America. All rights reserved.Fil: Fontán, Patricia A.. University of Medicine and Dentistry of New Jersey; Estados UnidosFil: Aris, Virginie. University of Medicine and Dentistry of New Jersey; Estados UnidosFil: Alvarez, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; ArgentinaFil: Ghanny, Saleena. University of Medicine and Dentistry of New Jersey; Estados UnidosFil: Cheng, Jeff. University of Medicine and Dentistry of New Jersey; Estados UnidosFil: Soteropoulos, Patricia. University of Medicine and Dentistry of New Jersey; Estados UnidosFil: Trevani, Analía Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; ArgentinaFil: Pine, Richard. University of Medicine and Dentistry of New Jersey; Estados UnidosFil: Smith, Issar. University of Medicine and Dentistry of New Jersey; Estados Unido

    Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma

    No full text
    Glioblastoma (GBM) is the most common and aggressive human brain tumor. Human cytomegalovirus (HCMV) immediate-early (IE) proteins that are endogenously expressed in GBM cells are strong viral transactivators with oncogenic properties. Here, we show how HCMV IEs are preferentially expressed in glioma stem-like cells (GSC), where they colocalize with the other GBM stemness markers, CD133, Nestin, and Sox2. In patient-derived GSCs that are endogenously infected with HCMV, attenuating IE expression by an RNAi-based strategy was sufficient to inhibit tumorsphere formation, Sox2 expression, cell-cycle progression, and cell survival. Conversely, HCMV infection of HMCV-negative GSCs elicited robust self-renewal and proliferation of cells that could be partially reversed by IE attenuation. In HCMV-positive GSCs, IE attenuation induced a molecular program characterized by enhanced expression of mesenchymal markers and proinflammatory cytokines, resembling the therapeutically resistant GBM phenotype. Mechanistically, HCMV/IE regulation of Sox2 occurred via inhibition of miR-145, a negative regulator of Sox2 protein expression. In a spontaneous mouse model of glioma, ectopic expression of the IE1 gene (UL123) specifically increased Sox2 and Nestin levels in the IE1-positive tumors, upregulating stemness and proliferation markers in vivo. Similarly, human GSCs infected with the HCMV strain Towne but not the IE1-deficient strain CR208 showed enhanced growth as tumorspheres and intracranial tumor xenografts, compared with mock-infected human GSCs. Overall, our findings offer new mechanistic insights into how HCMV/IE control stemness properties in GBM cells

    Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma

    No full text
    Glioblastoma (GBM) is the most common and aggressive human brain tumor. Human cytomegalovirus (HCMV) immediate early (IE) proteins that are endogenously expressed in GBM cells are strong viral transactivators with onconcogenic properties. Here, we show how HCMV IE are preferentially expressed in glioma stem-like cells (GSC), where they co-localize with the other GBM stemness markers, CD133, Nestin, and Sox2. In patient-derived GSC that are endogenously infected with HCMV, attenuating IE expression by an RNA-i-based strategy, was sufficient to inhibit tumorsphere formation, Sox2 expression, cell cycle progression, and cell survival. Conversely, HCMV infection of HMCV-negative GSC elicited robust self-renewal and proliferation of cells that could be partially reversed by IE attenuation. In HCMV-positive GSC, IE attenuation induced a molecular program characterized by enhanced expression of mesenchymal markers and pro-inflammatory cytokines, resembling the therapeutically-resistant GBM phenotype. Mechanistically, HCMV/IE regulation of Sox2 occurred via inhibition of miRNA-145, a negative regulator of Sox2 protein expression. In a spontaneous mouse model of glioma, ectopic expression of the IE1 gene (UL123) specifically increased Sox2 and Nestin levels in the IE1-positive tumors, upregulating stemness and proliferation markers in vivo. Similarly, human GSC infected with the HCMV strain Towne but not the IE1-deficient strain CR208 showed enhanced growth as tumorspheres and intracranial tumor xenografts, compared to mock-infected human GSC. Overall, our findings offer new mechanistic insights into how HCMV/IE control stemness properties in glioblastoma cells
    corecore