37 research outputs found

    Nanomedicine-driven neuropathic pain relief in rat model is associated with macrophage polarity and mast cell activation

    Get PDF
    We explored the immune neuropathology underlying multi-day relief from neuropathic pain in a rat model initiated at the sciatic nerve by using a nanoemulsion-based nanomedicine as a biological probe. The nanomedicine is theranostic: both therapeutic (containing celecoxib drug) and diagnostic (containing near-infrared fluorescent (NIRF) dye) and is small enough to be phagocytosed by circulating monocytes. A model of neuropathic pain is initiated by tying four 1mm spaced knots around the sciatic nerve with chromic gut suture, which results in neuroinflammation, and a resultant pain-like behavior manifests. We show that pain-like behavior reaches a plateau of maximum hypersensitivity 8 days post-surgery, and is the rationale for intravenous delivery at this time-point. Pain relief is evident within 24 hours, lasting approximately 6 days. The ipsilateral sciatic nerve and associated L4 and L5 dorsal root ganglia (DRG) tissue of both nanomedicine and control (nanoemulsion without drug) treated animals was investigated by immunofluorescence and confocal microscopy at the peak of pain relief (day 12 post-surgery), and when pain-like hypersensitivity returns (day 18 post-surgery). At day 12, a significant reduction of infiltrating macrophages, mast cells and mast cell degranulation was observed at the sciatic nerve following treatment. In the DRG, there was no effect of treatment at both day 12 and day 18 on the numbers of macrophages and mast cells. Conversely, at the DRG, there is a significant increase in macrophage infiltration and mast cell degranulation at day 18. The treatment effect on immune pathology in the sciatic nerve was investigated further by assessing the expression of macrophage cyclooxygenase-2 (COX-2)—the drug target--and extracellular prostaglandin E2 (PGE2), as well as the proportion of M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. At day 12, there is a significant reduction of COX-2 positive macrophages, extracellular PGE2, and a striking reversal of macrophage polarity. At day 18, these measures revert to levels observed in control-treated animals. Here we present a new paradigm of immune neuropathology research, by employing a nanomedicine to target a mechanism of neuropathic pain—resulting in long-lasting pain relief--whilst revealing novel immune pathology at the injured nerve and associated DRG. The pathology of pain relief that these studies reveal, highlights a crucial concept: that a single nanomedicine dose targeted to general peripheral neuroinflammation, may not be sufficient—that a treatment plan could be modified to firstly include additional treatment points, and secondly target the associated DRG in order to dampen the inflammation and pain signaling emanating there

    Poetry and Nationalism: Comparative analysis of Emerson and Mehjoor

    Get PDF
    Poets are the nation builders. Poets have always fueled the nationalistic movements all over the world from ancient times. Whatever be the nativity of the poets, they use the same motifs, themes and the historical representations in order to proclaim the nationalistic fervor. I have chosen two representative poets of the east and the west and under different political conditions to argue their similarities on the subject of nationalism. Ralph Waldo Emerson from America and Gulam Ahmad Mehjoor from Kashmir are the subject of my analysis. Both these poets are great in their own field. But they have the same nationalistic zeal. Both these poets advice and entreat both leaders and the common men to stand and defend their nation with courage, proper dedication and spirit. The focus of my study is to compare the two great poets on the theme of nationalism. There are many things common between the two poets such as veneration for nature, mysticism, belief in communal harmony and fraternity, and above all zeal of nationalism. Although they lived in different times and situations they deal with the subject of national consciousness in the same manner and brevity

    Opposing effects ofApoe/Apoa1double deletion on amyloid-ÎČ pathology and cognitive performance in APP mice

    Get PDF
    ProducciĂłn CientĂ­ficaATP binding cassette transporter A1 (encoded by ABCA1) regulates cholesterol efflux from cells to apolipoproteins A-I and E (ApoA-I and APOE; encoded by APOA1 and APOE, respectively) and the generation of high density lipoproteins. In Abca1 knockout mice (Abca1(ko)), high density lipoproteins and ApoA-I are virtually lacking, and total APOE and APOE-containing lipoproteins in brain substantially decreased. As the Δ4 allele of APOE is the major genetic risk factor for late-onset Alzheimer's disease, ABCA1 role as a modifier of APOE lipidation is of significance for this disease. Reportedly, Abca1 deficiency in mice expressing human APP accelerates amyloid deposition and behaviour deficits. We used APP/PS1dE9 mice crossed to Apoe and Apoa1 knockout mice to generate Apoe/Apoa1 double-knockout mice. We hypothesized that Apoe/Apoa1 double-knockout mice would mimic the phenotype of APP/Abca1(ko) mice in regards to amyloid plaques and cognitive deficits. Amyloid pathology, peripheral lipoprotein metabolism, cognitive deficits and dendritic morphology of Apoe/Apoa1 double-knockout mice were compared to APP/Abca1(ko), APP/PS1dE9, and single Apoa1 and Apoe knockouts. Contrary to our prediction, the results demonstrate that double deletion of Apoe and Apoa1 ameliorated the amyloid pathology, including amyloid plaques and soluble amyloid. In double knockout mice we show that (125)I-amyloid-ÎČ microinjected into the central nervous system cleared at a rate twice faster compared to Abca1 knockout mice. We tested the effect of Apoe, Apoa1 or Abca1 deficiency on spreading of exogenous amyloid-ÎČ seeds injected into the brain of young pre-depositing APP mice. The results show that lack of Abca1 augments dissemination of exogenous amyloid significantly more than the lack of Apoe. In the periphery, Apoe/Apoa1 double-knockout mice exhibited substantial atherosclerosis and very high levels of low density lipoproteins compared to APP/PS1dE9 and APP/Abca1(ko). Plasma level of amyloid-ÎČ42 measured at several time points for each mouse was significantly higher in Apoe/Apoa1 double-knockout then in APP/Abca1(ko) mice. This result demonstrates that mice with the lowest level of plasma lipoproteins, APP/Abca1(ko), have the lowest level of peripheral amyloid-ÎČ. Unexpectedly, and independent of amyloid pathology, the deletion of both apolipoproteins worsened behaviour deficits of double knockout mice and their performance was undistinguishable from those of Abca1 knockout mice. Finally we observed that the dendritic complexity in the CA1 region of hippocampus but not in CA2 is significantly impaired by Apoe/Apoa1 double deletion as well as by lack of ABCA1. In conclusion: (i) plasma lipoproteins may affect amyloid-ÎČ clearance from the brain by the 'peripheral sink' mechanism; and (ii) deficiency of brain APOE-containing lipoproteins is of significance for dendritic complexity and cognition

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    COPD with Atrial Fibrillation

    No full text
    Background: COPD is one of the leading cause of morbidity and mortality and is associated with variety of cardiovascular disease especially Arrhythmia which is directly associated with severity of COPD so there was a need to identify the incidence of Atrial Fibrillation (AF) in COPD patients and its effect on mortality and morbidity of patients admitted in hospital for COPD. Material and Methods: A retrospective study was conducted and data analysis was done, of all patients with established COPD diagnosis. The number of patients were divided into two groups: (1) Patients with diagnosed COPD in ordinance with GOLD guidelines (2) Patients with COPD diagnosed with AF, new onset and old. Post admission patients were divided on the basis of age, sex, H/o, CAD and H/o smoking. Results: Out of 200 study patients, 30% had AF (old and new). 34% had new onset AF and 66% were known cases of AF. Out of patients with AF 18% were less than 50 years of age, 60% between 50-70 years, 22% more than 70 years, 80% were smoker, 20% non-smokers, 80% had CAD; 75% were male and 25% female. Conclusion: COPD patients are at higher risk of developing AF. COPD with AF patients have longer Hospital stay and increased mortality

    Nanomedicine-driven neuropathic pain relief in a rat model is associated with macrophage polarity and mast cell activation

    No full text
    We explored the immune neuropathology underlying multi-day relief from neuropathic pain in a rat model initiated at the sciatic nerve, by using a nanoemulsion-based nanomedicine as a biological probe. The nanomedicine is theranostic: both therapeutic (containing celecoxib drug) and diagnostic (containing near-infrared fluorescent (NIRF) dye) and is small enough to be phagocytosed by circulating monocytes. We show that pain-like behavior reaches a plateau of maximum hypersensitivity 8 days post-surgery, and is the rationale for intravenous delivery at this time-point. Pain relief is evident within 24 h, lasting approximately 6 days. The ipsilateral sciatic nerve and associated L4 and L5 dorsal root ganglia (DRG) tissue of both nanomedicine and control (nanoemulsion without drug) treated animals was investigated by immunofluorescence and confocal microscopy at the peak of pain relief (day-12 post-surgery), and when pain-like hypersensitivity returns (day-18 post-surgery). At day-12, a significant reduction of infiltrating macrophages, mast cells and mast cell degranulation was observed at the sciatic nerve following treatment. In the DRG, there was no effect of treatment at both day-12 and day-18. Conversely, at the DRG, there is a significant increase in macrophage infiltration and mast cell degranulation at day-18. The treatment effect on immune pathology in the sciatic nerve was investigated further by assessing the expression of macrophage cyclooxygenase-2 (COX-2)-the drug target-and extracellular prostaglandin E2 (PGE2), as well as the proportion of M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. At day-12, there is a significant reduction of COX-2 positive macrophages, extracellular PGE2, and a striking reversal of macrophage polarity. At day-18, these measures revert to levels observed in control-treated animals. Here we present a new paradigm of immune neuropathology research, by employing a nanomedicine to target a mechanism of neuropathic pain-resulting in long-lasting pain relief--whilst revealing novel immune pathology at the injured nerve and associated DRG

    Targeted cyclooxygenase-2 inhibiting nanomedicine results in pain-relief and differential expression of the RNA transcriptome in the dorsal root ganglia of injured male rats

    No full text
    Chronic constriction injury of the sciatic nerve in rats causes peripheral neuropathy leading to pain-like behaviors commonly seen in humans. Neuropathy is a leading cause of neuropathic pain, which involves a complex cellular and molecular response in the peripheral nervous system with interactions between neurons, glia, and infiltrating immune cells. In this study, we utilize a nonsteroidal anti-inflammatory drug -loaded nanoemulsion to deliver the cyclooxygenase-2 inhibitor, Celecoxib, directly to circulating monocytes following nerve injury, which provides long-lasting pain relief. However, it is not fully understood how cyclooxygenase-2 inhibition in a macrophage traveling to the site of injury impacts gene expression in the dorsal root ganglia. To elucidate aspects of the molecular mechanisms underlying pain-like behavior in chronic constriction injury, as well as subsequent pain relief with treatment, we employ RNAseq transcriptome profiling of the dorsal root ganglia associated with the injured sciatic nerve in rats. Using high throughput RNA sequencing in this way provides insight into the molecular mechanisms involved in this neuroinflammatory response. We compare the transcriptome from the dorsal root ganglias of the following study groups: chronic constriction injury animals administered with cyclooxygenase-2 inhibiting celecoxib-loaded nanoemulsion, chronic constriction injury animals administered with vehicle treatment, a drug-free nanoemulsion, and a group of naĂŻve, unoperated and untreated rats. The results show an extensive differential expression of 115 genes. Using the protein annotation through evolutionary relationship classification system, we have revealed pain-related signaling pathways and underlying biological mechanisms involved in the neuroinflammatory response. Quantitative polymerase chain reaction validation confirms expression changes for several genes. This study shows that by directly inhibiting cyclooxygenase-2 activity in infiltrating macrophages at the injured sciatic nerve, there is an associated change in the transcriptome in the cell bodies of the dorsal root ganglia

    A new best practice for validating tail vein injections in rat with near-infrared-labeled agents

    No full text
    Intravenous (IV) administration of agents into the tail vein of rats can be both difficult and inconsistent. Optimizing tail vein injections is a key part of many experimental procedures where reagents need to be introduced directly into the bloodstream. Unwittingly, the injection can be subcutaneous, possibly altering the scientific outcomes. Utilizing a nanoemulsion-based biological probe with an incorporated near-infrared fluorescent (NIRF) dye, this method offers the capability of imaging a successful tail vein injection in vivo. With the use of a NIRF imager, images are taken before and after the injection of the agent. An acceptable IV injection is then qualitatively or quantitatively determined based on the intensity of the NIRF signal at the site of injection
    corecore