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ABSTRACT 

 

NANOMEDICINE-DRIVEN NEUROPATHIC PAIN RELIEF IN RAT MODEL IS 

ASSOCIATED WITH MACROPHAGE POLARITY AND MAST CELL ACTIVATION 

 

 

 

By 

Muzamil Saleem 

December 2019 

 

Dissertation supervised by John A. Pollock. 

Adapted from: 

Saleem, M., Deal, B., Nehl, E., Janjic, J., Pollock, J. A. Nanomedicine-driven 

neuropathic pain relief in a rat model is associated with macrophage polarity and mast cell 

activation. Acta Neuropathol Commun. 2019; 7: 108, doi: 10.1186/s40478-019-0762-y. 

 

Saleem, M., Stevens, A. M., Deal, B., Liu, L., Janjic, J., Pollock, J. A. A New Best 

Practice for Validating Tail Vein Injections in Rat with Near-infrared-Labeled Agents. J. Vis. 

Exp. (146), e59295, doi:10.3791/59295 (2019). 

 

Jelena M. Janjic, Kiran Vasudeva, Muzamil Saleem, Andrea Stevens, Lu Liu, Sravan 

Patel, John A. Pollock. Low-dose NSAIDs reduce pain via targeted nanoparticle delivery to 
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neuroinflammation in Rat. Journal of Neuroimmunology 2018; 318, 

doi:  10.1016/j.jneuroim.2018.02.010. 

 

We explored the immune neuropathology underlying multi-day relief from neuropathic 

pain in a rat model initiated at the sciatic nerve by using a nanoemulsion-based nanomedicine as 

a biological probe.  The nanomedicine is theranostic: both therapeutic (containing celecoxib 

drug) and diagnostic (containing near-infrared fluorescent (NIRF) dye) and is small enough to be 

phagocytosed by circulating monocytes. A model of neuropathic pain is initiated by tying four 

1mm spaced knots around the sciatic nerve with chromic gut suture, which results in 

neuroinflammation, and a resultant pain-like behavior manifests. We show that pain-like 

behavior reaches a plateau of maximum hypersensitivity 8 days post-surgery, and is the rationale 

for intravenous delivery at this time-point. Pain relief is evident within 24 hours, lasting 

approximately 6 days. The ipsilateral sciatic nerve and associated L4 and L5 dorsal root ganglia 

(DRG) tissue of both nanomedicine and control (nanoemulsion without drug) treated animals 

was investigated by immunofluorescence and confocal microscopy at the peak of pain relief (day 

12 post-surgery), and when pain-like hypersensitivity returns (day 18 post-surgery). At day 12, a 

significant reduction of infiltrating macrophages, mast cells and mast cell degranulation was 

observed at the sciatic nerve following treatment. In the DRG, there was no effect of treatment at 

both day 12 and day 18 on the numbers of macrophages and mast cells. Conversely, at the DRG, 

there is a significant increase in macrophage infiltration and mast cell degranulation at day 18. 

The treatment effect on immune pathology in the sciatic nerve was investigated further by 

assessing the expression of macrophage cyclooxygenase-2 (COX-2)—the drug target--and 

extracellular prostaglandin E2 (PGE2), as well as the proportion of M1 (pro-inflammatory) and 
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M2 (anti-inflammatory) macrophages. At day 12, there is a significant reduction of COX-2 

positive macrophages, extracellular PGE2, and a striking reversal of macrophage polarity. At day 

18, these measures revert to levels observed in control-treated animals. Here we present a new 

paradigm of immune neuropathology research, by employing a nanomedicine to target a 

mechanism of neuropathic pain—resulting in long-lasting pain relief--whilst revealing novel 

immune pathology at the injured nerve and associated DRG.  

The pathology of pain relief that these studies reveal, highlights a crucial concept: that a 

single nanomedicine dose targeted to general peripheral neuroinflammation, may not be 

sufficient—that a treatment plan could be modified to firstly include additional treatment points, 

and secondly target the associated DRG in order to dampen the inflammation and pain signaling 

emanating there.  
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Chapter I. 

Introduction 

Chronic pain is a disease epidemic 

Adapted from Saleem et al. Acta Neuropathologica Communications volume 7, 

Article number: 108 (2019) 

 

Pain remains the most pervasive reason for medical visits worldwide and affects more 

people than cancer, heart disease, and diabetes combined 1. It is a burden to society, as well as 

the wider economy 2 and afflicts at least 20% of the world’s population 3.  Pain is ineffectively 

managed, largely because the underlying neuropathology is poorly understood, and because it 

has been mischaracterized by health care systems solely as a symptom of other diseases. When 

pain transitions from acute to chronic, it becomes a neurobiological disease in its own right 4 as 

defined by the World Health Organization 5. Traditionally, efforts to understand the mechanisms 

underlying chronic pain have centered on neuronal plasticity 6,7: nociceptor sensitization in the 

peripheral nervous system 8,9, and sensitization of pain circuits in the central nervous system 10. 

In the last two decades, it has been shown that there is a non-neuronal input—largely from the 

immune system--that contributes to nociceptor sensitization 10. This includes neuroinflammation, 

which results from a number of insults, such as injury, neurodegeneration, autoimmunity, and 

infection 11.  
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Treatment of chronic pain 

 

Research linking acute and chronic pain to inflammation has its root in the early seventies 

when Sir John Vane showed for the first time that aspirin worked by inhibiting prostaglandin 

synthesis 12. This led to a path of investigation that uncovered the cyclooxygenase-1 (COX-1) 

and cyclooxygenase-2 (COX-2) enzymes 13,14, and eventually led to the first trials of selective 

COX-2 inhibitors 15. Blocking the action of the inducible COX-2 enzyme, which is largely 

expressed peripherally at sites of inflammation, infection and cancer where it was effective in 

reducing pain and inflammation 16. COX-2 drives the production of PGE2, a potent 

inflammatory mediator capable of sensitizing nerves and causing neuropathic pain.  

Analgesics currently used to treat pain include: Acetaminophen, nonsteroidal anti-

inflammatory drugs (NSAIDs), cyclooxygenase-2 (COX-2) inhibitors, and opioids. All these 

drug treatments in their current form are biodistributed systemically, which requires a relatively 

high dose in order to achieve efficacy at the site of injury. A higher dose subsequently poses a 

greater risk of tolerance, addiction and adverse side effects. In the case of Acetaminophen, its 

mechanism of action is not completely understood; although it readily crosses the blood brain 

barrier and is thought to reduce the active form of cyclooxygenase (COX) enzyme in the brain—

independent of direct binding to the active site--, as well as modulating the cannabinoid system 

17. In high doses, it is toxic to the liver, and has been found to be toxic in brain tissue 18. In terms 

of long-term toxicity from use to treat chronic pain, there have been reports of kidney disease, 

bleeding in the digestive tract, heart attack, stroke and high blood pressure 19. NSAIDs can act in 

the peripheral nervous system—unlike acetaminophen-- and in high doses, are able to lower 

inflammation, which is an underlying mechanism contributing to pain. Common anti-
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inflammatory drugs such as naproxen and ibuprofen target the enzyme, as well as its isoform, 

COX-1. These drugs have off-target upper gastrointestinal side effects, including diarrhea, 

abdominal pain and upset stomach. Selective inhibitors of the COX-2 enzyme such as Vioxx 

(rofecoxib; Merck) solved this problem in part, however, in the early 2000’s, it was found that 

Vioxx adversely affected the cardiovascular system, causing over 100,000 heart attacks with 

greater than 30% mortality 20. Vioxx was subsequently withdrawn from the market. Other COX-

2 inhibitors, like Celecoxib, are effective selective inhibitors, however large systemic doses 

cause adverse side effects by blocking constitutively expressed COX-2 not associated with 

inflammation, which is indirectly essential for normal homeostatic functioning—as a result of 

countering infection and initiating wound healing. It is thus important to explore drug therapies 

that target the drug to the site of injury or inflammation, and that can also dramatically reduce the 

total body burden of the drug. 

Additionally, opioids cannot be mentioned without considering the unprecedented opioid 

epidemic in the United States. More than 700,000 people in the United States have died from a 

drug overdose from 1999 to 2017. In 2017 alone, approximately 68% of the 70,200 deaths from 

drug overdose involved an opioid 21. Taken together, current pain medication strategies are 

flawed, and very often dangerous. There is a great need for a dynamic, innovative way to treat 

pain in the clinic, and current research in the field of pain medicine is offering a hope of filling 

this demand.   

We seek to better understand some of the neuroinflammatory mechanisms underlying 

neuropathic pain, by utilizing the sciatic nerve chronic constriction injury (CCI) model in rat 22 

and introducing a single micro-dose (0.24 mg/kg) of nonsteroidal anti-inflammatory (NSAID) 

drug (celecoxib) that is packaged in a nanoemulsion (NE) along with near-infrared (NIR) 
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detection capability 23. This model results in an inflammatory response to four loosely tied 

chromic gut ligatures on the right sciatic nerve, causing swelling and subsequent constriction of 

the nerve.  As a result of the CCI procedure, rats exhibit hypersensitive pain behavior 

approximately eight days following surgery 23–25. The inflamed nerve is infiltrated by a complex 

milieu of immune cells, inflammatory mediators 25 and signaling molecules that sensitize it to 

receive increased nociceptor input, resulting in persistent pain  26. This inflammatory response is 

largely driven by the infiltration of macrophages 27,28, which express COX-2, producing PGE2 

among other cytokines and chemokines 25. 

 

 

Advent of pain nanomedicine to personalize treatment and reverse opioid 

epidemic 

 

It can be considered a high and outstanding goal of medicine to possess the technology to 

cure a disease by manipulating its pathology on the molecular level, in a precision-targeted 

manner that is personalized to the individual. Consider Richard Fleischer’s 1966 Oscar-award-

winning film Fantastic Voyage; a ‘submarine’ crew is shrunk to microbial size in order to be 

injected into a patient—their goal being to remove a blood clot in the brain. The diagnostic 

medical utility has similarly been imagined in science fiction, in the case of the medical tricorder 

in Star Trek—a device that can be scanned over the body and visualize readings from a patient 

on the nanoscale and diagnose various conditions. Qualcomm, a semiconductor company 

recently sponsored a $10 million prize to create a device inspired by this science fiction 29, the 
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efforts of which culminated in a scanner that could diagnose 13 different conditions, and read 5 

vital signs simultaneously.  

Now very much a disruptive technology, the global nanotechnology market is growing 

rapidly; estimated at $45 to $50 billion in 2018 by a report from IndustryARC. For example, the 

use of nanoparticle-based theranostics – a term that describes an agent that is both therapeutic 

and diagnostic - for application in health and medicine is termed nanomedicine.  It is a new 

frontier that can contribute to tackling the deadliest and most pervasive diseases worldwide. 

Nanomedicine formulations have the potential for improvements in efficacy and safety by way 

of improvements in precise targeting to sites of pathology 23,24,30.  The application of 

nanomedicine has been used in treating cancer--submissions to the U.S. Food and Drug 

Administration (FDA) for nanomedicines to treat cancer increased by 40% between 2012 and 

2017 31. Nanoparticle technology was initially explored to tackle the challenge of cancer by 

targeting the discontinuous nature of blood vessels in tumors 32,33 and culminated in the first 

FDA-approved nanomedicine in 1995, Doxil® 34.  

The size of a nanoparticle ranges from approximately 10 to 200 nanometers, and its 

design at this scale allows for the opportunity to be targeted to, and interact specifically with 

cellular components, such as membranes, receptors and nucleic acids--structures that are also 

nanoscale 35. This allows for the possibility of nanoparticles traversing biological membrane 

barriers such as blood vasculature, and the blood brain barrier, as well as endocytosis into 

immune effector cells such as macrophages 24,36,37. In addition to advantages in biological 

interaction rendered by the scale of nanoparticles, incorporating a drug inside of a nanoparticle 

results in an increase in bioavailability and extended half-life 38. Another advantage of 

nanomedicine is a decrease in toxicity—due to vastly less drug being required for efficacy. The 
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inherent design of a nanomedicine functions to reduce the toxicity of the therapeutic molecule it 

encapsulates—and the earliest nanomedicines approved by the FDA were based on showing 

lower toxicity than the traditional drug formulations they were replacing 39. 

The bioengineering of nanomedicines has advanced to integrating dynamic functions in 

addition to the primary therapeutic use, such as incorporating diagnostic contrast agents to track 

nanoparticles in vivo 23,24,40 using optical and MRI imaging 24,41–43. Termed ‘theranostic’, 

combining both therapeutic and diagnostic functions, a nanomedicine with this utility offers the 

ability to track its biodistribution—and through this, and by measuring disease symptoms in a 

patient-- tailor a treatment strategy. This begins to realize a personalized medicine paradigm.   

 

 

Types of nanomedicines 

 

Nanomedicines can be produced from various types of nanomaterials, including 

perfluorocarbon (PFC) nanoemulsions 36,42–46, liposomes 47, polymeric nanoparticles 48, nanogels 

49,50, exosomes 51 and metal-based nanoparticles 52,53 (Fig. 1A). Liposome-based nanoparticles 

are a versatile delivery platform; for example, they can contain nucleic acids such as siRNAs, as 

well as traditional pharmacological agents. Polymeric nanoparticles are composed of a polymeric 

core that is hydrophobic, and have the advantage of a higher capacity to load drugs that are 

poorly water soluble 54. Nanogels (or hydrogels) are composed of a three-dimensional lattice of 

hydrophilic, crosslinked arrays of polymers that can be loaded with drugs 49. 
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Figure 1. Nanomedicine targeting strategies, types of formulation and the realization of 

personalized medicine.  

Various types of nanomedicine formulations have been produced and they can have a multitude 
of applications 55(A), which include but are not limited to, perfluorocarbon nanoemulsions 
36,38,41–46,56,57 (i), liposomes 47,58–61 (ii), a polymeric matrix in the form of nanospheres 62 (iii) and 
nanogels 49,50,63,64 (iv). A nanomedicine can be designed to incorporate a variety of different 
targeting and reporting paradigms (B). Drug-loading (i) can be incorporated on the surface, in 
a shell or at the core of a nanoparticle 65 (shown in blue). Reporting functions (ii) can be 
designed into a nanomedicine, such as a fluorescent component 42, or an atom like 19F that can 
be detected by MRI 41 (shown in red). Further functionality can be added by designing reporting 
elements (such as fluorescence) that can be activated by an excitable component (iv), that is for 
example sensitive to sound, temperature 66, or pH 67 (shown in pink). Nanomedicine can be 
targeted (iii) to immune cell endocytosis 68 and transport to sites of inflammatory pain 23,24. 
Targeting design can be further enhanced by incorporating an anchored protein 69 (such as a 
peptide, ligand, antibody or antigen) or DNA molecule 70 (such as mRNA or siRNA) (shown in 
yellow). PEGylation is a strategy used to improve the bioavailability of a nanomedicine 68 by 
coating the surface with polyethylene glycol.  

Nanomedicines can also be designed to incorporate a targeting element on the 

nanoparticle, such as an antibody that can bind to a key protein involved in the disease process, 

resulting in an indirect reporting of pathological information about the local environment (Fig. 
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1B). The information is very useful to a clinician, who can monitor and alter the treatment plan 

accordingly, in a personalized manner 46.  

 

 

Nanomedicine research for the treatment of pain  

 

Perfluorocarbon nanoemulsions targeted to the COX-2 enzyme in macrophages have 

been developed by Janjic and colleagues 36,37,57,71,72,38,41–46,56. In a rat model of neuropathic pain, 

these nanoemulsions target infiltrating macrophages to nerve injury, and are shown to be 

effective in reversing pain-like behavior and macrophage-related inflammation 23,44,57.  

Nanoparticles based on lipids—such as liposomes and solid lipid nanoparticles (SLNs)—

are another class of nanomedicine that have been in development for over two decades 60.  

Researchers recently conjugated Leu-enkephalin (LENK)—an endogenous neuropeptide that is 

usually rapidly metabolized to the lipid squalene (SQ) to create nanoparticles that showed pain 

relief in a rat model of inflammation 73. The drug-release profile of LENK-SQ nanoparticles 

could be engineered into the design by using different chemical linkers. The anti-hyperalgesic 

effects outlasted morphine treatment, and the nanoparticles were able to bypass the blood-brain 

barrier. The ability to modulate the rate of drug release is an advance that could allow a 

nanomedicine to be engineered so that subsequent dosing could have varying release profiles 

based on the underlying pain pathology—a significant advance in personalized medicine.  

Clinical studies involving cannabis and synthetic cannabinoids as a way to manage 

chronic pain have been gaining traction 74. Researchers investigated the utility of nanoparticles 
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composed of poly(lactic-co-glycolic acid) (PLGA)—a copolymer--loaded with a cannabinoid 

derivate, and found that neuropathic pain was alleviated for eleven days after a single oral dose 

of a nanoparticle formulation optimized with a polyethylene glycol (PEG) coating  75.  

In another study investigating the efficacy of a polymeric nanomedicine, researchers 

loaded nanoparticles with curcumin and observed significantly reduced pain-like behavior 

resulting from diabetic neuropathic pain via the attenuation of the DRG expressed P2Y12 

receptor 76. Curcumin, while possessing anti-inflammatory and antioxidant properties, exhibits 

low bioavailability and stability in its free form 76. This study demonstrates an improvement in 

efficacy by encapsulating the compound in a nanoparticle. 

Nanoparticles formulated into a hydrogel matrix offer the advantage of improving 

viscosity and making nanomedicine application more feasible for topical application. This 

presents a particularly useful application in the case of post-operative pain, or muscle pain. In 

one study, a hydrogel containing Hyptis pectinata (Lamiaceae) Leaf Essential Oil was 

formulated to be thermoreversible—and lowered pain-related behavior in an acid saline-induced 

chronic muscle pain model 64. Another study utilizing hydrogel-based nanomedicine found that 

this method of delivery prevented the precipitation of the bioactive compound—nobiletin—

which is hydrophobic. Delivering the hydrophobic drug to the bladder by a cationic nanoparticle 

and thermo-sensitive hydrogel composite system resulted in preserving the stability of nobiletin 

in the GI tract, resulting in a sustained release and absorption54. A method such as this could 

conceivably be applied to a pain medicine delivered orally, resulting in an improvement in 

bioavailability and efficacy.  

 

 



 

10 

The realization of personalized pain nanomedicine  

 

The heterogeneity of pain is further compounded by sex-differences in both peripheral 

and central molecular cell biological mechanisms as well as underlying aspects of pain 

perception 77,78 that equates to a need for a personalized approach to treatment. Current 

nanomedicine design is factoring in approaches that meet this need, the most prominent of which 

is the advent of theranostic nanomedicine 36,37,57,72,38,41–46,56. Conceptualized by Dr. Jelena Janjic, 

a personalized medicine approach has been applied for the first time to pain therapy 46. This 

promises to track the underlying pathology of pain for each individual patient, and determine if 

treatments need to be modified. The utility of machine learning could also be used to compute 

patient data and use it to screen not only existing pain nanomedicines on the market, but suggest 

ways in which to modify them to offer the most effective treatment. The advances in 

personalized pain nanomedicine have the advantage of limiting drug toxicity further, by 

administering treatment only for as long as it is required—as reported by the nanomedicine 23,46. 

In another example of the utility of nanomedicine as personalized medicine, the bodies 

endogenous extracellular vesicles are used to transport drug—a technology that has been 

demonstrated recently to treat liver disease 51. The limiting of toxicity and the ability to target the 

PNS pathology of pain places nanomedicine treatment as a potential resource distinct from CNS 

targeted drugs such as opioids.  By attenuating or eradicating the source of the pain with a 

targeted, low-dose strategy, there is not a need to rely on high doses of drugs that target pain 

processing centrally 46.  

Personalized nanomedicine represents a desperately needed advance to effectively 

manage severe chronic pain disorders such as fibromyalgia, neuropathic pain and migraine, and 
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begin to reverse the opioid epidemic. Further pain nanomedicine research, as well as translating 

advances in terms of precision drug targeting from the oncology field, will be required to 

improve the treatment of acute and chronic pain and realize a truly personalized approach. 

Considerations of toxicity, environmental impact and manufacturing potential will also need to 

be addressed in order to fast-track pain nanomedicines onto the market.  

 

 

Macrophage and mast cell mechanisms of neuropathic pain 

Reprinted with modification from Saleem et al. Acta Neuropathologica Communications 

(2019). volume 7, Article number: 108 (2019)   

 

We sought to further our understanding of the immune-cell pathology underlying 

neuropathic pain by utilizing the chronic constriction injury (CCI) rat model 22. In this model, an 

inflammatory response is produced by loosely tied chromic gut ligatures on the right sciatic 

nerve, causing swelling and subsequent constriction of the nerve. The inflamed nerve is 

infiltrated by a complex milieu of immune cells, inflammatory mediators 25 and signaling 

molecules, resulting in nociceptor sensitization, and causing persistent pain  26. This 

inflammatory response is largely driven by the infiltration of macrophages 27,28, which express 

the cyclooxygenase-2 (COX-2) enzyme. COX-2 synthesizes PGE2, and in addition, the 

macrophage releases various other cytokines and chemokines 25. Rats exhibit progressive 

hypersensitive pain-like behavior reaching a maximum approximately eight days following 

surgery 23–25.  
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In earlier studies, Janjic and colleagues have designed and developed theranostic 

nanoemulsions that exhibit a preferential targeting of circulating monocytes via phagocytosis  36–

38,42–46,57,72, and subsequent natural migration and accumulation at sites of inflammation 57, 

including injured nerve 23. In this paradigm, we are also able to image the extent of 

neuroinflammation by detecting a near-infrared fluorescent (NIRF) signal from the 

nanoemulsion-contained DiR fluorescent dye that accumulates at the site of injury in live 

animals 23,24. We have previously described the formulation of drug loaded perfluorocarbon 

nanoemulsions 23,44. The rationale described previously by Janjic and colleagues 23,44,57 for drug-

loading nanoemulsion droplets with celecoxib is to directly attenuate the COX-2 enzyme, which 

synthesizes PGE2, a potent proinflammatory mediator. PGE2 perpetuates the neuroinflammation 

that sensitizes nociceptors, leading to neuropathic pain. Celecoxib directly binds to the active site 

on the COX-2 enzyme, thereby blocking the synthesis of PGE2 79. We have previously shown 

that nanomedicine treatment reverses pain-like behavior and reduces inflammation in a 

neuropathic pain model in rats 23 and in an inflammation model in mice 57. 

We designed an experiment with the aim of exploring key aspects of macrophage and 

mast cell neuropathology whilst pivoting at key events on a timeline of neuropathic pain: a state 

where the animal exhibits pain-like behavior, a state where the animal experiences peak pain-

relief (day 12 post-surgery)—as a result of nanomedicine treatment 23—and a state when the 

animal returns to pain-like behavior (day 18 post-surgery). Testing groups of CCI rats are 

intravenously administered with nanomedicine or vehicle treatment (nanoemulsion without 

celecoxib) 8-days post-surgery—due to animals showing peak pain-like behavior at this time 

point. A control group of animals undergoes a sham CCI surgery. Key in the design of the 

nanomedicine is the capability of visualizing macrophages 36,37,42,43,45,57,71 that have phagocytosed 
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the nanoemulsion (~ 140 nm per droplet). In this way, the theranostic nanomedicine—that is both 

‘therapeutic’ and ‘diagnostic’—serves as a biological probe to both influence and/or label 

aspects of the underlying neuropathology. 

Pivoting on the behavioral states of pain, pain relief, and return to pain as compared to 

control animals, we first present the extent of inflammation measured by NIRF imaging of the 

live animal and then report on our findings from histological analysis of sciatic nerve and its 

associated L4 and L5 DRG. Using confocal microscopy, the quantity of infiltrating macrophages 

is measured—marked by anti-CD68 antibody, a pan-macrophage marker 80—in the injured 

sciatic nerve and associated L4 and L5 DRG neurons. 

Along with macrophages, resident mast cells constitute another major cell group involved 

in the inflammatory response. They are found close to nociceptive neuron cell bodies 81—as well 

as in a progenitor form in the blood circulation—and are associated with a number of clinical 

pain disorders 82. With respect to the inflammatory component of neuropathic pain, mast cells 

provide an input to cause neurogenic inflammation, which propagates along afferent nociceptors 

via the release of substance P 82. Mast cells are filled almost entirely with secretory granules and 

contain a vast assortment of inflammatory mediators and other bioactive molecules such as 

cytokines, lysosomal hydrolases and proteases 83. In this study, mast cell count and extent of 

degranulation in the sciatic nerve and associated DRG is investigated by labeling with an 

antibody targeted to mast cell protease 1 (Mcpt-1). Mcpt1 constitutes a major component of the 

secretory granules released by mast cells during an inflammatory response and is specific to this 

cell type. The cellular expression of Mcpt1 labels mast cells, and when expressed extracellularly, 

indicates that a mast cell has been activated and degranulation has occurred. We present data 
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reporting on the numbers of mast cells, and the extent of their degranulation, at the sciatic 

nerve—and the associated DRG—following nanomedicine treatment. 

The treatment effect observed at the sciatic nerve was probed further by investigating 

individual macrophages to reveal details of their inflammatory phenotype, in addition to whether 

they are positive for nanomedicine NIRF signal. We also report on the expression of COX-2 in 

macrophages and their release of PGE2 in the milieu of the injured sciatic nerve tissue. 

Macrophages play a dual role in damaged tissues—a subset performs inflammatory functions 

and are termed M1 pro-inflammatory macrophages, while those that are anti-inflammatory 

effectors, promoting tissue repair, are termed M2 macrophages 84,85. A recent membrane 

proteome study 86 was able to discriminate M1 (pro-inflammatory) and M2 (anti-inflammatory) 

macrophages with high precision by their expression of the costimulatory protein, Cluster of 

Differentiation 40 (CD40), and transferrin receptor (TFRC) respectively. These markers were 

thus used to investigate the percentage of M1 and M2 macrophages in the injured sciatic nerve. 

Our present paper 87 details the relative macrophage polarity in the context of treatment, and 

pain-like behavior. We also report on the presence of CD68-positive multinucleated giant cells 

(MGCs) in the injured nerve—cells formed from the fusion of their M2 polarized macrophage 

precursors. MGCs have been reported to enhance the removal of debris from tissues 88, aiding 

tissue regeneration. 

This thesis and published paper 87 proposes a mechanism for nanomedicine-driven pain 

relief in a rat model of neuropathic pain. We present the interplay of COX-2 attenuation, PGE2 

production and the resulting effect on macrophage polarity. In addition, macrophage infiltration 

to the injured nerve is investigated, as well as the formation of multinucleated giant cells, which 

contribute to tissue regeneration and repair. The numbers of mast cells localized in the injured 
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nerve and DRG and the extent of their degranulation is investigated. Based on patterns of 

macrophage infiltration, changes in their phenotype, and levels of mast cell degranulation, we 

suggest a mechanism that could underscore the return to pain-like behavior when the treatment 

effect has subsided. Taken together, this observation provides key insights into the 

neuropathology underlying neuropathic pain, by utilizing a nanomedicine as a biological probe. 

Having the ability to track patterns of macrophage infiltration both during and after long-lasting 

pain relief, we demonstrate a novel research paradigm that could be useful in more precisely 

elucidating the neuropathology underlying diseases with an immune component. 
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Chapter II. 

Materials and methods 

Adapted from Saleem et al. Acta Neuropathologica Communications volume 7, 

Article number: 108 (2019) and Janjic et al. Journal of Neuroimmunology. Volume 318, 

Pages 72-79. (2018. 

 

 

Ethics approval and consent to participate 

 

This study was carried out in accordance with the recommendations in the Guide for the Care 

and Use of Laboratory Animals of the National Institutes of Health. The Institutional Animal 

Care and Use Committee (IACUC) at Duquesne University approved the protocol (# 1501-01 for 

Janjic et al publication 23 and # 1109-10 for Saleem et al publication 87). Male Sprague-Dawley 

rats weighing approximately 220 g were used in this study (Hilltop Lab Animals, Inc., Scottdale, 

PA). Rats were maintained on a 12:12 hour light-dark cycle and were given unrestricted access 

to purified chow (D10012G, Research Diets, Inc., New Brunswick, NJ) and water. All efforts 

were made to minimize animal suffering and to reduce the number of animals used. 
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Blinded experiments 

 

Aspects of these studies were carried out under “blinded condition”. For example, the 

NIR fluorescence image analysis was performed by an analyzer who was blinded to the CCI, 

sham or naive conditions. Similarly, the histological data was collected in a blind fashion as well. 

The tissue samples collected during dissection were coded and the confocal microscopy and 

image analysis were performed as per the codes which were later matched with any given rat 

condition. 

DF-NE and CXB-NE treatment conditions were blinded from the investigator. During 

behavioral data collection, it was not possible to stay blind to the surgical condition, because the 

signs of a CCI surgery were very robust and the rat conditions were easily discernible from the 

sham or naive rats. 

 

 

Chronic constriction injury 

 

The CCI 22 animal model was used to induce neuropathic pain in rats as previously 

described 23.  Briefly, animals were divided into three groups; CCI rats administered with 

nanomedicine containing no drug (DF-NE), CCI rats administered with nanomedicine containing 

drug (CXB-NE) and sham surgery rats. Under isoflurane anesthesia, the surgical site was 

sterilized with ethanol and iodine, the skin was incised and the biceps femoris muscles separated 

to expose the sciatic nerve. Chromic gut suture was used to tie four ligatures approximately 1 
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mm apart around the common sciatic nerve. Care was taken to ensure the ligatures were neither 

tight nor loose. The biceps femoris muscles were closed using chromic gut suture followed by 

skin closure using stainless steel wound clips. An identical surgery was performed on animals in 

the sham CCI group, without ligatures being tied to the sciatic nerve.  

 

 

Pain-like behavior testing 

 

To assess mechanical allodynia - indicative of pain-like hypersensitivity - von Frey 

filaments were applied to the plantar surface of the hind-paw. These are hand-held instruments 

with an attached filament that is elastic, and will bend at a specific force, determined by the 

thickness of this filament. The threshold force at which rats withdrew their paws 50% of the time 

was determined using the up-down method 89. Testing was performed at the same time of day 

during their light cycle. Rats were acclimated for 15 minutes in the testing apparatus: Perspex 

chambers with a wire mesh floor that allows access to the paws. Baseline testing was carried out 

for two consecutive days before surgery. The rats were rested for one day following surgery, 

after which behavioral testing resumed a day later, and on consecutive days, ceasing on the day 

12 or day 18 following surgery (summarized in Fig. 4A). The 50% paw withdrawal threshold 

was calculated, and treatment groups were analyzed by two-way ANOVA with Tukey’s post hoc 

test for multiple comparisons of group means. The confidence interval was 95% and data were 

presented as mean ± SD. The statistical software used was GraphPad Prism 6.  

 



 

19 

In vitro cell culture studies – cellular uptake 

 

Concentration dependent uptake of nanoemulsions was determined in macrophages as 

reported previously using NIRF imaging 44 by the laboratory of Dr. Jelena Janjic. 

 

 

In vitro cell culture studies – cellular viability 

 

The effect of nanoemulsions on the viability of RAW 264.7 macrophages was evaluated 

after a 24 h incubation at 37 °C with different concentrations of nanoemulsion dispersed in whole 

media. This was performed by the laboratory of Dr. Jelena Janjic. Control cells were not exposed 

to any treatments. Cells were plated at 5000 cells/100 μL/well in 96 well plates and incubated 

overnight for adhesion, followed by 24 h incubation with treatments. After incubation, cell media 

was replaced by fresh warm full cell culture media 100 μL. CellTiter-Glo® analyte was added 

(40 μL/well) to induce cell lysis by shaking in the dark for 20 min at RT. The obtained cell 

lysates (90 μL) were transferred to a white opaque plate and luminescence recorded on 

microplate reader Victor 2 (Perkin Elmer, Waltham, MA). 
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PGE2 ELISA Assay 

 

The pharmacological effect of the nanoemulsion in vitro (RAW 264.7) was evaluated 

after a 24 h incubation at 37 °C with different concentrations of nanoemulsion dispersed in cell 

culture media. This was performed by the laboratory of Dr. Jelena Janjic. Cells were plated at 

300,000 cells/2 mL/well in 6-well plates and incubated overnight for adhesion, followed by 24 h 

incubation with nanoemulsion treatments. After treatment, the nanoemulsion media was replaced 

with LPS treated (0.5 μg/mL) and LPS free media for 3 h. This final media was recovered for the 

PGE2 ELISA assay. 

 

 

Rat Tail-Vein Injection of Nanoemulsion 

 

Adapted from:  A new Best Practice for Validating Tail Vein Injections in Rat with 

Near-infrared labeled Agents 

Muzamil Saleem*, Andrea M Stevens*, Lu Liu, Jelena Janjic, John A Pollock 

*Co-first authors 

Reprinted from Saleem, M., Stevens, A. M., Deal, B., Liu, L., Janjic, J., Pollock, J. A. A 

New Best Practice for Validating Tail Vein Injections in Rat with Near-infrared-Labeled 

Agents. J. Vis. Exp. (146), e59295, doi:10.3791/59295 (2019). 
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Contribution statement 

• M.S. performed all experiments, produced figures and wrote the manuscript under the 

guidance of J.A.P. 

• J.A.P, A.S, L.L and J.M.J contributed to editing the manuscript. 

• Animal care, surgery, tail vein injections, and NIRF imaging were carried out jointly by 

M.S. and A.S. under the guidance of J.A.P.  

• B.D. performed tail vein injection during the filming of this video protocol 

• NIRF image quantification and statistical analysis was performed by M.S. under the 

guidance of J.A.P. 

• J.M.J. produced the nanoemulsion and designed the overall approach for targeting the 

COX-2 enzyme in macrophages in the context of neuropathic pain. The nanoemulsion 

was further fabricated by L.L. and S.P. under the guidance of J.M.J.  

• Stability of nanoemulsion was assessed by J.M.J, L.L. and S.P.  

 

The nanomedicine--celecoxib-loaded (CXB-NE) and drug-free (DF-NE)—was injected 

intravenously via the lateral tail vein of rats on day-8 post-surgery (Fig. 3A) as previously 

described 23,90. Injection of 300 µL of CXB-NE or DF-NE was performed with an intravenous 

catheter with a blood-flow indicator (Terumo, Tokyo, Japan). The single dose of celecoxib in the 

CXB-NE group was ~0.24 mg/kg. The successful injection was confirmed by both the blood 

indicator on the catheter as well as using a pre and post-injection NIRF image to make a quality 

assessment 90. 

In our recent published paper 90 and demonstration video 

(https://www.jove.com/video/59295/a-new-best-practice-for-validating-tail-vein-injections-rat-

https://www.jove.com/video/59295/a-new-best-practice-for-validating-tail-vein-injections-rat-with-near
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with-near) we presented a method to validate tail vein injections in rats by utilizing near-infrared 

fluorescence imaging data from dyes incorporated into agents or biological probes. The tail is 

imaged before and after the injection, the fluorescent signal is quantified, and an assessment of 

the injection quality is made.  

The motivation for the development of this procedure is that intravenous (IV) 

administration of agents into the tail vein of rats can be both difficult and inconsistent. 

Optimizing tail vein injections is a key part of many experimental procedures where reagents 

need to be introduced directly into the bloodstream. Unwittingly, the injection can be 

subcutaneous, possibly altering the scientific outcomes. Utilizing a nanoemulsion-based 

biological probe with an incorporated near-infrared fluorescent (NIRF) dye, this method offers 

the capability of imaging a successful tail vein injection in vivo. With the use of a NIRF imager, 

images are taken before and after the injection of the agent. An acceptable IV injection is then 

qualitatively or quantitatively determined based on the intensity of the NIRF signal at the site of 

injection.  

 

https://www.jove.com/video/59295/a-new-best-practice-for-validating-tail-vein-injections-rat-with-near
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Figure 2. NIRF based nanoemulsion and images of tail vein.  

A nanoemulsion-based biological probe containing NIRF dye was injected into (B) the lateral 
tail vein and imaged in a NIRF imager. (C and D) Pre- and post-injection images of a good 
injection. (E and F) Pre- and post-injection images of a bad injection. White arrows indicate the 
point of injection. It is possible to qualitatively assess the success of a good injection compared 
to a bad injection by assessing the extent of the NIRF signal at the site of injection. Unacceptable 
injections display fluorescence throughout the length of the tail and were removed from the 
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analysis (Figure 2). (G) The images can also be analyzed to reveal a quantitative measure of 
fluorescence intensity, with thresholds for injection quality assigned by the investigator. The 
error bars on the graph reflect the SEM. For the ‘good injection’ group, n = 7. For the ‘bad 
injection’ group, n = 4. There is a statistical difference in fluorescence intensity in the ‘bad 
injection’ group when comparing pre- and post-injection images (unpaired t-test; p = 0.0024). 
This figure is reproduced from Saleem et al. J. Vis. Exp. (146), e59295, doi:10.3791/59295 
(2019). Muzamil Saleem performed related experiments and produced the figure.  

In this method, a NIRF dye containing a biological probe—in this case, a nanoemulsion 

(Fig. 2A) 37,44,45,57—is injected into the lateral tail vein of rats. This particular NIRF-containing 

nanoemulsion has been used previously to image and track neuroinflammation in vivo and ex 

vivo 42,43 in a rat model 22 of neuropathic pain 23–25,37,44,57. Imaging is conducted before and after 

the injection with a preclinical NIR fluorescence imager. This serves as a tool to validate the 

quality of the agent administration. Imaging prior to the tail vein injection serves as a basis for 

obtaining a baseline image. 

Typically, a heat lamp or warm water is used to warm the tail, which causes dilation of 

the vein, permitting its visualization prior to injection. While this ensures easier entry into the 

vein, there is not a quantitative way to discern whether the compound has entered the 

bloodstream in its entirety 91–94. This becomes more difficult still in strains of animals where the 

vein contrasts faintly with the skin, such as in black mice. Typically, the investigator can gauge a 

failed injection by experiencing resistance during the injection and, in some cases, visualizing a 

bulge on the tail, indicating a subcutaneous leakage of the agent 95,96.  

Simultaneous image acquisition of white light and 800 nm fluorescence is captured using 

the NIRF imager and associated software. The relative fluorescence intensity is measured on the 

tail at the pre-injection and post-injection states. The fluorescence intensity for the region of 

interest (ROI) at the site of injection is recorded and divided by the area of the ROI. Qualitative 

assessments can be made on which injections are acceptable. Optionally, further quantitative 
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analysis can be performed by setting thresholds for acceptable injections and assigning ROI 

measurements into groups, at which point statistical significance can be calculated.  

By utilizing this validation strategy following tail vein injections, the standard of a 

research study improves due to increased consistency of agent administration.  

 

Animal Protocol  

All protocols were performed in accordance with the guidelines in the Guide for the Care 

and Use of Laboratory Animals of the National Institutes of Health and Institutional Animal Care 

and Use Committee (IACUC) at Duquesne University protocol #1501-01 and #1803-02. 

 

Preparation and anesthesia 

NOTE: Aseptic techniques were used for the entirety of the procedure. Only new sterile 

materials and autoclaved sterile instruments were used. Personal protective equipment (sterile 

gloves, hair bonnet, surgical mask, scrubs) was worn to avoid contamination. 

We used adult male Sprague-Dawley rats weighing 250–300 g. Rats were acclimated to 

standard living conditions, a 12 h light/12 h dark cycle, and provide food and water ad libitum. 

Animals were socially housed, on paper bedding, and provide a controlled diet (D10012G 

Research Diets, Inc. New Brunswick, NJ to avoid autofluorescence during imaging.  

With the use of a properly placed heating pad, we anesthetized the animal under an initial 

5% isoflurane in 20% oxygen, followed by a maintenance level of not less than 1.5% isoflurane 

and not more than 3%, unless the animal wakes up or retains feeling.  
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We confirmed proper anesthesia via a lack of response to tail pinches. Monitor the blood 

flow as well via vital signs throughout the procedure. 

 

Pre-injection imaging 

 

We imaged the animal in a preclinical NIR fluorescence imager by positioning the animal 

laterally to expose the injection site on the lateral tail to establish a baseline of fluorescence in 

the tail (Fig. 2C, E).  

Following imaging, animals were moved back to the surgical table, and placed under 

anesthesia for the tail vein injection.  

NOTE: Rat’s vital signs were continually monitored, and proper anesthetization 

rechecked via tail pinch.  

 

Method of Tail vein injection 

 

With the animal in the prone position, orient the tail with the dorsal side facing up. Dilate 

the tail vasculature in warm water for a minimum of 1 min. Orient the tail vein so the lateral side 

(either right or left) is turned 30° (clockwise or counterclockwise) to expose the right or left tail 

vein (Fig. 2B).  

Once a lateral tail vein has been located (which appears dark-colored upon dilation), 

sterilize the entire tail with alcohol pads, repeating 2x. 
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At an appropriate dosage based on the study design, begin injections in the distal 

coccygeal vertebrae region of the tail and moving more proximal if proper needle placement 

fails. 

Insert a 25–27 G sterile needle, bevel up, into the lateral tail vein, with the tail at a 180° 

angle, inserting the needle parallel to the lifted tail. Observe blood flashback in the rim of the 

needle to ensure correct placement. If no flashback is apparent, slowly move the needle tip 

(without removing it from the tail) to find vein insertion. If placed subcutaneously, no blood 

flashback will occur.  

Insert the syringe with the injectable materials into the rim of the needle. When proper 

placement is achieved, the injectable fluid will not incur resistance upon injection. The injection 

will advance smoothly and easily. Once injected, remove the needle and the syringe, apply 

pressure with sterile gauze for at least 1 min to ensure clotting, and mark the spot of injection 

with a pen on the tail, ensuring it is visible on the white light image. NOTE: No hematoma or 

lesion will be visible at the site of injection.  

If the needle tip moves during the syringe insertion, remove the needle and retry the 

needle entry procedure more proximal on the ipsilateral tail vein. Do not reuse the same needle if 

a different reentry point is tried. NOTE: Alternatively, the injection can be performed with an IV 

catheter (SURFLO IV Catheter, 24 gauge, by TERUMO). This has the benefit of visual 

confirmation of the catheter during venipuncture. Insert the catheter, bevel side up, at the angle 

previously described. Observe prompt flashback in the entire length of the needle and the 

catheter to ensure correct placement. Slight back pressure can be used to pull blood into the 

syringe to confirm proper placement in the vessel before injecting. Again, no resistance will be 

felt.  
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Post-injection imaging 

 

Perform quality assessment after the tail vein injection in a preclinical NIR fluorescence 

imager in the same orientation as the pre-injection image. Increase the isoflurane anesthesia to 

3% for several minutes and move the animal to the imager. Ensure the animal is still properly 

anesthetized. 

Quickly, orient the animal on its lateral side to expose the injection site (as marked) on 

the lateral tail. Check to see if a NIRF signal is present only at the site of injection as this is the 

most optimal injection, indicating a successful tail vein injection (Fig. 2D).  

NOTE: If the signal is sparse but still within the proximal vicinity of the tail vein 

injection, the injection is acceptable and can be considered as a successful tail vein injection. If 

the signal is dispersed throughout the entire tail, it is considered to be subcutaneous and, thus, 

unsuccessful (Fig. 2F). Fig. 3 shows additional examples of failed injections. 

 

Image quantification 

 

Image quantification can be performed in the imaging software that accompanies the NIR 

imager, as this is a function of the software. Alternatively, other commercially available imaging 

software may be used 97. In the post-injection image, draw an ROI around the area of 

fluorescence at the injection site and clone it in all animals in order to compare 23,45. Perform a 

simultaneous image acquisition of white light (body view) and 785 nm excitation for 820 nm 

emission using the NIRF imager and associated software, with linked lookup tables (LUT). 
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Perform a one-way analysis of variance (ANOVA) as a statistical analysis for the entire set of 

conditions revealing a treatment effect with a statistically significant p-value of 0.0024. 

Measure the area and relative fluorescence intensity and record the measurement of the 

area/intensity.  

NOTE: The researcher can decide on thresholds that discriminate good from bad 

injections or assign a percentage of quality to the injection. 

 

Results  

Rats were injected with NIRF-containing nanoemulsion into the lateral tail vein, and pre- 

and post-injection images were taken with the small-animal imager (Pearl Trilogy by Li_COR 

Biosciences) as described in the protocol. Post-injection images are qualitatively assessed for 

injection quality and placed into ‘good injection’ (n = 7) and ‘bad injection’ (n = 4) groups. 

Qualitative assessment was carried out by observing the post-injection area fluorescence 

intensity. In an optimal injection, the NIRF signal is confined to the site of injection. No signal 

will be seen if the injection is successful because the agent has been fully displaced into the 

bloodstream. A bad-quality injection displays a NIRF signal that is dispersed along the length of 

the tail.  

Images were analyzed with the accompanying NIRF imager software. ROIs were drawn 

at the site of pre-injection images (Fig. 2C, E) and around the area of fluorescence in post-

injection images (Fig. 2D, F). Images where fluorescence was visible throughout the length of 

the tail were deemed unacceptable and removed from the analysis (Fig. 3A, B, C). Measurements 

of the area and fluorescence intensity were recorded. Values for area/fluorescence intensity were 
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calculated and plotted (Fig. 2G). A significant difference in fluorescence intensity between pre- 

and post-injection images was observed in the ‘bad injection’ group (Fig. 2G) (p = 0.0024). 

 

Figure 3. Examples of bad injections.  

Fluorescent signal seen in part of the tail. (B) Fluorescent signal seen over the full length of the 
tail. (C) Fluorescent signal dispersed heavily in the entire tail and caudal area of the animal’s 
body. This figure is reproduced from Saleem et al. J. Vis. Exp. (146), e59295, doi:10.3791/59295 
(2019). Muzamil Saleem performed related experiments and produced the figure. 

 

 

NIRF Imaging in Live Animals 

 

The right and left thigh of anesthetized rats were imaged with a preclinical fluorescence 

imager (LiCOR® Pearl Impulse from LI-COR Biosciences, Lincoln, NE) on day-11 and day-17 

post-surgery, in day 12 and day 18 testing groups respectively. The NIR dye in the nanomedicine 

that has accumulated in labeled monocytes/ tissue macrophages fluoresces in the scanner. Images 

in the fluorescent channel (785 nm excitation for 820 nm emission) and a white light channel (to 

capture an image of the body of the rat) are acquired and merged in the LiCOR Pearl Impulse 

Software (version 2.0) with linked look-up-tables (LUT) 24. In order to avoid non-specific 
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fluorescence in the abdominal and thoracic region, animals were given a controlled research diet 

throughout the procedure (D10012G Research Diets, Inc. New Brunswick, NJ). NIRF images 

were analyzed using Image Studio Lite Software (LI-COR Biosciences, Lincoln, NE) as 

previously described 23,24. Briefly, a region of interest (ROI) was selected over the sciatic nerve. 

Relative fluorescence of ROI was calculated by dividing the total fluorescence in the ROI by the 

area. Relative fluorescence of the testing groups is analyzed by one-way ANOVA, with a 

Tukey’s post hoc test to test multiple comparisons of group means. The confidence interval is set 

at 95%. Data are presented as mean ± SEM. The statistical software used is GraphPad Prism 6. 

 

 

 

Euthanasia  

 

Rats were euthanized under anesthesia with a 2 ml intraperitoneal injection of Euthasol 

(pentobarbital sodium and phenytoin sodium solution, Virbac AH, Inc., Fort Worth, TX). The 

animals were immediately perfused with 180 mL of cold 1X PBS followed by 180 mL of 4% 

paraformaldehyde 1X PBS solution, administered into the left ventricle of the heart, resulting in 

whole body fixation.  
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Figure 4. Summary of the experimental timeline, neuropathic pain model and testing groups.  

Summary of the experimental timeline, neuropathic pain model and testing groups. (a) A daily 
timeline indicates the procedures that a rat undergoes for both the 12-day test group and the 18-
day test group.  Mechanical stimulus-evoked pain-like hypersensitivity testing (b1), surgery (b2), 
tail vein injection of treatment (b3), live-animal NIRF imaging, and recovery of tissue for 
analysis (b4). Sciatic nerve and DRG (RL4 and RL5) tissue is collected from the animal 
following euthanasia and perfusion-fixation on day 12 and day 18 (a, b4). Test groups are split 
into time-points of day 12 and day 18, each with groups of CCI and sham surgery rats (c). The 
surgery groups are further divided into rats that are treated with drug-free nanomedicine (DF-
NE) and those treated with celecoxib nanomedicine (CXB-NE) (C). This figure is reproduced 
from Saleem et al. Acta Neuropathologica Communications. Volume 7, 
Article number: 108 (2019). Muzamil Saleem performed related experiments and produced the 
figure. 
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Tissue Processing 

 

Sciatic nerve--and separately, L4 and L5 DRG--was dissected on day 12 or day 18 post-

surgery. Tissue was post-fixed in 4% PFA (pH 7.4) in 1X PBS for 24 hours at 4 °C and then 

transferred to 30% sucrose in 1X PBS and stored at 4 °C until further processing. Tissue was 

prepared for sectioning by transferring to OCT solution (Sakura, Torrance, CA) and frozen in a 

bath of isopentane maintained at a temperature of ~-55 to -60 °C surrounded by dry ice. Frozen 

tissue was sectioned at a thickness of 20 µm and mounted on gelatin-coated slides 

(SouthernBiotech, Birmingham, AL). The slides were stored at -20 °C until further processing. 

 

 

Immunofluorescence and Nanoemulsion Detection 

 

Protocol used in Saleem et al. Acta Neuropathologica Communications volume 7, 

Article number: 108 (2019) 

Slides were processed using the primary antibodies listed in Supplementary Table 1 at the 

stated dilutions from manufacturer stock solutions. Double-staining was performed with two 

primary antibodies in each experiment. Appropriate secondary antibodies raised in different 

hosts were selected to target the host of the primary antibody in order to prevent nonspecific 

binding. Sections stored at -20 °C were warmed on a slide warmer at 37 °C for 30 minutes. 

Sections were post-fixed in 4% paraformaldehyde in 1X PBS solution for 15 minutes and 

permeabilized for 10 minutes in 0.3% Triton X-100 detergent in 1X PBS. Tissue blocking of 
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nonspecific staining was performed by incubating with BlockAid™ Blocking Solution (B10710, 

Thermo Fisher Scientific) for 1 hour at room temperature.  This solution was also used to prepare 

all working antibody solutions. The sections were incubated overnight at 4 °C with primary 

antibody prepared at the appropriate working dilution (Supplementary Table 1). The following 

day, sections were washed in 0.3% Triton X-100 detergent in 1X PBS and incubated in 

secondary antibody solution for 2 hours at room temperature. Following washing in 0.3% Triton 

X-100 detergent in 1X PBS, sections were mounted using Prolong Diamond antifade reagent 

with DAPI (P36965, Thermo Fisher Scientific).  The nanomedicine contains DiR so that a 

‘double-stain’ experiment actually has four dyes in the tissue; DAPI (nuclei), two secondary-

antibody conjugated fluorophores (Supplementary Table 2), and DiR (nanomedicine). 

 

Table 1. Primary antibodies used for immunofluorescence. 

 

Protocol used in Janjic et al. Journal of Neuroimmunology. Volume 318, Pages 72-

79. (2018). 

The recovered control, sham and CCI sciatic nerves were prepared for 

immunohistochemical examination using mouse anti rat CD68 antibody (MCA341R, AbD 

Serotech, Raleigh, NC) and Alexa fluor 488 donkey anti-mouse secondary antibody (A-21202, 

Invitrogen, Carlsbad, CA) to assess the presence of macrophages that infiltrate the nerve. The 

double immunofluorescence studies were also performed to reveal the expression of COX-2 and 
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PGE2 in relationship to the CD68 positive infiltrating macrophages using, rabbit anti-COX-2, 

1:100 (ab15191, AbD Serotech) and rabbit anti-prostaglandin E2 antibody, 1:100 (ab2318, AbD 

Serotech) along with mouse CD68, 1:100 (MCA341R, AbD Serotech) in treated and untreated 

rat groups. The secondary antibodies used were Alexa fluor 488 donkey anti-mouse, 1:200 (A-

21202, Invitrogen), Alexa fluor 546 donkey anti-goat, 1:200 (A-11056, Invitrogen) and Alexa 

fluor 647 donkey anti-rabbit, 1:200 (A-31573, Invitrogen). All the antibody dilutions were 

prepared using 1:20 normal donkey serum in 1× PBS, pH 7.4. Antigen retrieval was performed 

during double immunofluorescence with COX-2 and CD68 primary antibodies, using sodium 

citrate buffer (10 mM sodium citrate, 0.1% Tween 20, pH 8.5). Antigen retrieval was not 

required during double immunofluorescence with PGE2 and CD68 primary antibodies. 

 

 

 

Confocal Microscopy and Image Analysis 

 

Protocol used in Saleem et al. Acta Neuropathologica Communications volume 7, 

Article number: 108 (2019) 

All stained sections were scanned by the Nikon A1 confocal microscope equipped with 

six excitation solid-state diode lasers (405nm, 440nm, 488nm, 514nm, 561nm, and 640nm) and 

acquired with the Nikon NIS-Elements software. Confocal images for a comparative set were 

acquired with the same instrument settings (laser power, gain, etc.). Image analysis was 

performed with the FIJI distribution of ImageJ (version 1.52i) software. 
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 For cell analysis, images were acquired in multiple channels to capture a marker for the 

cell, an additional protein-of-interest, as well as the NIRF signal emitted from the nanomedicine. 

Regions-of-interest were drawn around individual cells in an image and fluorescence intensity 

(mean fluorescence/ area) in each channel was measured. For each experiment, a threshold of 

mean intensity/ area was allocated in relevant confocal imaging channels (e.g. protein of interest 

and nanomedicine NIRF) by sampling multiple images to discriminate cells positive for a 

protein-of-interest, from those that were negative for the protein-of-interest. Subsequently, the 

total cell count, those cells positive for a protein of interest, and those positive for nanomedicine 

were recorded. Next, it was determined which cells were both positive for the protein-of-interest 

and the nanomedicine NIRF signal. Particle analysis for Mcpt1 and extracellular PGE2 was 

performed by first applying a threshold to the image to select stained particles and cells. Next, a 

size discrimination threshold was applied to exclude cells—to leave behind particles--and a 

particle count was performed for each image. Cell and particle count between test groups was 

analyzed by one-way ANOVA with Tukey’s post hoc test to test multiple comparisons of group 

means. A confidence interval of 95% was set. Data are presented as mean ± SEM. The statistical 

software used to calculate one-way ANOVA is GraphPad Prism 6. In order to compare the 

differences between percentages of proteins-of-interest colocalized with macrophages between 

test groups, Pearson Chi-Square, and Fisher’s exact tests were utilized and performed on IBM 

SPSS Statistics 25 software. A confidence interval of 95% was set, and a Fisher’s exact test p-

value is computed. 
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Protocol used in Janjic et al. Journal of Neuroimmunology. Volume 318, Pages 72-

79. (2018). 

Confocal microscopy was performed on a Leica SP2 spectral Laser Scanning Confocal 

microscope and corresponding image analysis with Leica LSC Confocal microscope software. 

The quantification analysis was performed for the double immunofluorescence slides stained 

with either COX-2 or PGE2 and CD68 antibodies, in three treated CBX-NE and three untreated 

DF-NE CCI rats. Confocal images for a comparative set were acquired with the same instrument 

settings (laser power, PMT voltage, pin hole, etc.). To determine any changes in the relative 

number of macrophages in the treated and untreated conditions, six regions of interest (ROIs) 

were chosen in each captured field-of-view of the ipsilateral sciatic nerve sections stained for 

CD68 positive cells for the CCI treated and untreated groups. At least two to three field of views 

were used for each of the rat nerve section to obtain 12–18 ROIs for each of the rats for a total of 

48–54 ROIs per condition (i.e. CCI treated or untreated). Mean fluorescence intensity of CD68 

stained sections was averaged from all the ROIs for the CCI drug (n = 54) and the CCI no drug 

(n = 48) conditions. No significant variation in the mean fluorescence intensity was found among 

individually identified macrophages in the treated or untreated groups. Therefore, the differences 

in the average mean fluorescence intensity per unit area among treated and untreated groups 

indicates differences in the relative number of macrophages between the two groups. The relative 

expression of COX-2 and PGE2 in the macrophages was determined by finding the ratios of the 

mean fluorescence intensity of COX-2 to the mean fluorescence intensity of CD68 in the same 

macrophage, and separately the ratios of the mean fluorescence intensity PGE2 in a given 

macrophage in both cases in drug and no drug conditions. The CD68 fluorescence intensity in 

the macrophages did not change in the drug or no drug condition and hence was used as a 
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reference for the ratio of the COX-2 or PGE2 fluorescence intensity in the treated or untreated 

CCI conditions. To analyze the COX-2 and PGE2 expression differences, a mean fluorescence 

intensity for either COX-2 or PGE2 was recorded in the individual CD68 positive cells. The 

changes in COX-2: macrophage or PGE2: macrophage mean fluorescence intensity ratio in 

treated or untreated group was indicative of relative changes in the COX-2 or PGE2 expression 

in the macrophages. 
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Chapter III. 

Results: Low-dose NSAIDs reduce pain via macrophage targeted 

nanoemulsion delivery to neuroinflammation of the sciatic nerve in 

rat  

Jelena M. Janjic, Kiran Vasudeva, Muzamil Saleem, Andrea Stevens, Lu Liu,  

Sravan Patel, John A. Pollock 

Reprinted from: Journal of Neuroimmunology, Volume 318, Pages 72–79. 2018. Requirement of 

permission waived for authors. 

 

Contribution statement 

Contributions by Muzamil Saleem 

• M.S. contributed to writing and editing of manuscript. 

• Animal care, surgery, tail vein injections, and NIRF imaging were carried out jointly by 

K.V., M.S. and A.S. under the guidance of J.A.P.  

• M.S. produced graphic layout of Figures 5 and 6.  

• Confocal microscopy of infiltrated macrophages in the sciatic nerve with nanoemulsion 

shown in Figure 5 performed by M.S. 

• Behavioral testing and statistical analysis shown in Figure 6 performed by M.S.   
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• NIRF image quantification and statistical analysis in Figure 6 was performed by M.S. 

under the guidance of J.A.P. 

 

Contributions by co-authors 

• J.M.J. produced the nanoemulsion and designed the overall approach for targeting the 

COX-2 enzyme in macrophages in the context of neuropathic pain. The nanoemulsion 

was further fabricated by L.L. and S.P. under the guidance of J.M.J.  

• Stability of nanoemulsion was assessed by J.M.J, L.L. and S.P.  

• Confocal microscopy of macrophage (RAW 264.7 cells) was performed by J.M.J. and 

L.L.  

• Macrophage (RAW 264.7 cells) viability and PGE2 release inhibition was performed by 

L.L.  

• Statistical analysis in Figure 5 was performed by L.L. under the guidance of J.M.J. 

• The immunohistochemistry and confocal microscopy and statistical analysis in Figure 7 

were carried out by K.V. with J.A.P. 

 

Highlights 

• Nanoemulsion with near IR dye and NSAID deliver drug to site of inflammation. 

• Drug delivery reduces inflammation visualized in live animals by near IR. 

• Drug delivery reduces macrophage infiltration at site of injury, and COX-2, PGE2. 

• Drug delivery provides relief from behavioral hypersensitivity. 

• A single dose is 2000–3000-fold less drug than normal twice daily oral dosing. 
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Abstract 

 

Neuroinflammation involving macrophages elevates Prostaglandin E2, associated with 

neuropathic pain. Treatment with non-steroidal anti-inflammatory drugs (NSAIDs) inhibits 

cyclooxygenase, reducing PGE2. However, NSAIDs cause physiological complications. We 

developed nanoemulsions incorporating celecoxib and near infrared dye. Intravenous injected 

nanoemulsion is incorporated into monocytes that accumulate at the injury; revealed in live 

animals by fluorescence. A single dose (celecoxib 0.24 mg/kg) provides targeted delivery in 

chronic constriction injury rats, resulting in significant reduction in the visualized inflammation, 

infiltration of macrophages, COX-2 and PGE2. Animals exhibit relief from hypersensitivity 

persisting at least four-days. The total body burden of drug is reduced by >2000 fold over oral 

drug delivery.  
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2. Materials and methods 

Please refer to chapter 2 for comprehensive materials and methods.  

 

 

 

 

3. Results 

3.1. Nanoemulsion development and quality control 

We have chosen nanoemulsions as our formulation platform because they can increase 

drug solubility and bioavailability 98–102 and can be produced on an industrial scale 98,103,104. The 

triphasic nanoemulsions presented here are composed of three immiscible liquids: perfluoro-15-

crown-5 as the perfluorocarbon oil, hydrocarbon oil (Miglyol 812N), and water (aqueous phase) 

where the hydrocarbon oil serves as the carrier for the drug and the NIRF dye, substances that 

have limited solubility in water (Figure 5A).  
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Figure 5. Nanoemulsion stability and pharmacological response.  

(A) Tri-phasic nanoemulsion (perfluorocarbon, hydrocarbon, oil in water) loaded with celecoxib 
(CXB) and near infrared dye (NIRF); (B) CXB-NE (nanoemulsion with celecoxib) particle size 
distribution at 4 °C, 25 °C and 37 °C for three days; (C) CXB-NE stability in different biological 
media Di-water, DMEM, 10%FBS and 20% FBS measured by dynamic light scattering (DLS). 
Points represent means with error bars the SD from 3 independent measurements; (D) CXB-NE 
size distribution at day 6 and day 390; (E) CXB-NE zeta potential distribution at day 6 and day 
390; (F) Fluorescent microscopy for NIR and DAPI for CXB-NE up-take by RAW 264.7 cell line 
(upper), CXB-NE up-take by tissue macrophages (lower). Scale bars are 20 µm; (G) 
Nanoemulsion pharmacological effect on RAW 264.7. % Cell viability in culture shown for CXB-
NE, DF-NE (nanoemulsion without celecoxib), free drug CXB and DMSO. Points represent 
means with error bars the SD from 3 independent cultures; (H) a dose curve shows PGE2 
release inhibition from LPS activated macrophages exposed to CXB-NE and free drug CXB. 
Points represent means with error bars the SD from 3 aliquots cultures. This figure is 
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reproduced from Janjic et al. Journal of Neuroimmunology. Volume 318, Pages 72-79. (2018). 
Muzamil Saleem produced the figure and contributed panel F. Members of the Dr. Janjic 
laboratory contributed the remaining panels.  

Fig. 5B–E shows that the celecoxib loaded nanoemulsion (CXB-NE) exhibits very good 

stability under different storage conditions. The particle size distributions after three days of 

storage at 4°C, 25°C, and 37°C overlay each other, showing that there is no change in size (Fig. 

5B). Colloidal stability was then assessed by serum stress test (Fig. 5C) showing that the 

nanoemulsion (CXB-NE) was stabile in all four types of biological media (Di-water, DMEM, 

10% FBS in DMEM, and 20% FBS in DMEM) at elevated temperature 37°C for 3 days. The Z-

Ave and zeta potential tests were performed upon storage on day 6 and again on day 390 

reveling no change (Fig. 5D, E and Supplementary Fig. S1 found at 

https://doi.org/10.1016/j.jneuroim.2018.02.010). CXB-NE drug content analysis was conducted 

on 3 different batches manufactured by different personnel over time. There are no significant 

drug loading changes between the same formulations that are produced at different times 

(Supplementary Fig. S2 found at https://doi.org/10.1016/j.jneuroim.2018.02.010 ). Drug free 

nanoemulsion (DF-NE) were taken up by RAW 264.7 macrophage cells through phagocytosis 

over 3 h exposure (Fig. 5F and Supplementary Fig. S3 found at 

https://doi.org/10.1016/j.jneuroim.2018.02.010) and the nanoemulsion is also evident in 

macrophages that have infiltrated the injured rat sciatic nerve (Fig. 5F). We also evaluated the 

cytotoxicity effect and pharmacological effect of nanoemulsions in vitro on RAW 264.7 cells. 

With up to 40 μM (CXB containing CXB-NE and free CXB) there is no significant drop of cell 

generated ATP tested by CellTiter-Glo® luminescent cell viability assay, which indicates that 

there is good cell viability at 40 μM concentration. Furthermore, no significant change of cell 

viability was detected after RAW 264.7 cells were exposed to DF-NE and free drug solution 
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(Fig. 5G). Finally, we tested the effects of nanoemulsions on COX-2 enzyme activity in RAW 

264.7 macrophages at different doses of celecoxib concentrations. When exposed to LPS, 

macrophages upregulate the COX-2 enzyme, which leads to increased production of PGE2. The 

inhibition of PGE2 release from LPS activated macrophages correlates with the concentration of 

the celecoxib in CXB-NE and free drug CXB (Fig. 5H and Supplementary Fig. S4 found at 

https://doi.org/10.1016/j.jneuroim.2018.02.010). 

 

 

3.2. Live animal pain assessment 

 

Chronic constriction injury (CCI) of the rat sciatic nerve leads to partial damage to the 

nerve and a neuroinflammatory response associated with hyper sensitivity, simulating common 

neuropathic conditions resulting from nerve lesion or disease in humans 24. Resident 

macrophages get activated, along with recruitment of circulating hematogenous monocytes 

(precursors of macrophages) to the site of the injury where they differentiate into tissue 

infiltrated macrophages. The accumulation of active immune cells helps to remove any 

degenerating distal axons while at the same time producing inflammatory mediators that enhance 

an inflammatory cascade 25,105. This, in turn, sensitizes the peripheral nerves leading to a change 

in the expression of ion channels and neurotransmitters. Sensitization is evident in behavior 

associated with increased hypersensitivity revealed with Von Frey filament stimulation of the 

affected paw, indicative of mechanical allodynia (Fig. 6A). Here we show that CCI animals are 

found to exhibit hypersensitivity by the sixth day after CCI surgery as compared to sham surgical 

animals. 
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Figure 6. Celecoxib theranostic nanoemulsion provides relief from hypersensitivity associated 

with pain and reduces inflammation.  

(A) Mechanical allodynia is evident in CCI animals beginning on Day 6 post-surgery. The 
comparison of CCI without celecoxib to animals with drug p < 0.0001 for day 10, 11, 12 
(Blue ****) while a comparison of CCI with celecoxib to animals with free celecoxib at 
the same concentration as that incorporated into nanoemulsion  p < .0001 for day 9, 10, 
11, 12 (Black ****). Analysis used repeated measures 2-WAY ANOVA with Bonferroni's 
multiple comparisons test. (B) On Day 8, prior to the injection of nanoemulsion, the live 
animals do not exhibit near infrared fluorescence (NIRF). Day 8 celecoxib-nanoemulsion 
injection via the tail vein provides pain relief (A, blue line). (C–E) shows the day 11 DiR 



 

47 

NIRF signal that corresponds to the level of inflammation. (D) CCI with drug-loaded 
nanoemulsion exhibits a reduced NIRF signal as compared to (E) CCI without drug. (F) 
Analysis of the relative fluorescence intensity of the NIRF signal reveals that the CCI 
animals that receive nanoemulsion without drug exhibit elevated macrophage 
recruitment while celecoxib loaded nanoemulsion significantly reduces the relative 
fluorescence as compared to the signal in CCI animals without drug. This figure is 
reproduced from Janjic et al. Journal of Neuroimmunology. Volume 318, Pages 72-79. 
(2018). Muzamil Saleem produced the figure and contributed all panels.  

By day 8 after CCI surgery, the paw withdrawal threshold reaches a level where there is marked 

pain-like bheavior22,24 (Fig. 6A), at which point the animals receive a tail-vein injection of the 

corresponding nanoemulsion; either without drug (DF-NE), with celecoxib incorporated into the 

nanoemulsion (CXB-NE) or with a free form of celecoxib at the same dose (a concentration of 

0.24 mg/kg celecoxib which amounts to 0.06 mg celecoxib for a rat that weighs approximately 

250 g at this point in the experiment)  – independent of nanoemulsion (free CXB + NE). By the 

very next day, animals injected with CXB-NE begin to exhibit a reversal in hypersensitivity, 

behavior that is markedly distinct from animals that received DF-NE or nanoemulsion with free-

drug. On day 11, after behavioral assessment and light anesthesia, the animals were imaged for 

DiR NIRF, revealing a concentrated signal over the region of the affected sciatic nerve (Fig. 6C–

E and Supplementary Fig. S5 found at https://doi.org/10.1016/j.jneuroim.2018.02.010). A clear 

difference is evident between the DiR NIRF signals for the animals receiving the celecoxib-

loaded nanoemulsion CXB-NE (Fig. 6D) as compared to the CCI no-drug animals DF-NE (Fig. 

6E). For the animals that received the low-dose celecoxib nanoemulsion, there is both a 

statistically significant difference (Fig. 6F, p < 0.0037) between the level of inflammation as 

reported by the NIRF and the level of hypersensitivity associated with the behavioral assessment 

of mechanical allodynia (Fig. 6A, p < 0.0001). 
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3.3. Histological evaluation of drug loaded nanoemulsion in injured sciatic nerve 

 

The CCI affected sciatic nerve is infiltrated with macrophages 24,25. Using confocal microscopy, 

we explore the density of macrophage infiltration as well as the expression of COX-2 and PGE2 

when the celecoxib-loaded nanoemulsion- CXB-NE is introduced (Fig. 7). We find that in the 

CCI sciatic nerve, there is a high density of infiltrating macrophages (positive for CD68) 

associated with the nanoemulsion treatment that lacks celecoxib DF-NE (Fig. 7A). A drug-

loaded nanoemulsion, CXB-NE, treatment is associated with a significant reduction in the 

number of CD68 positive macrophages (Fig. 7B, P; t-test, p < 0.0001). The contralateral, 

unaffected sciatic nerve from the left leg, as well as the sham animal's right sciatic nerve and the 

naïve animal's right sciatic nerve do not show any infiltrating macrophages (Fig. 7C–E). The 

affected (right) sciatic nerve treated with DF-NE exhibits COX-2 expression (Fig. 7F) whereas 

the affected sciatic nerve with CXB-NE exhibits a significant reduction in COX-2 (Fig. 7G, Q; t-

test, p < 0.0001). The controls, which include the contralateral sciatic nerve as well as the sham 

and naïve nerves, do not exhibit detectable COX-2 expression (Fig. 7H–J). The assessment of 

PGE2 expression shows a signal in the CCI right sciatic nerve (Fig. 7K), which is significantly 

reduced in the CCI sciatic nerves where CXB-NE is present (Fig. 7L, R; t-test, p < 0.0001). To 

summarize, our analysis of the relative fluorescence levels for anti-CD68 as well as for anti-

COX-2 and anti-PGE2 reveal statistically significant reduction of the number of infiltrating 

macrophages when CXB-NE is used. Similarly, there is a reduction in COX-2 and PGE2 

expression. These changes are associated with the CBX-NE treated animal's reversal in pain 

associated hypersensitivity. 
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Figure 7. Celecoxib theranostic nanoemulsion reduces the number of infiltrating CD68 positive 

macrophages in the sciatic nerve, and reduces the expression of COX-2 and PGE2 detected by 

quantification of relative immunofluorescence.  

There is infiltration of CD68 positive macrophages along with COX-2 and PGE2 expression in 
the ipsilateral sciatic nerve sections of the CCI group injected with the vehicle nanoemulsion (A, 
F, K) and the CCI group injected with the theranostic nanoemulsion containing the drug 
celecoxib (B, G, L). An apparent reduction in the expression of CD68, COX-2 and PGE2 is 
revealed in the CCI group injected with the theranostic nanoemulsion (B, G, L). Quantification 
of the relative fluorescence revealed significant reduction in mean fluorescence intensity per unit 
area for CD68 macrophages (P), COX-2 expression in macrophages (Q) and PGE-2 expression 
in macrophages (R in the CCI group treated with celecoxib-containing nanoemulsion (t-test, 
p < 0.0001). Ipsilateral sciatic nerve sections from the sham (D, I, N) and naïve control rats (E, 
J, O) injected with the vehicle nanoemulsion and contralateral sciatic nerve sections from the 
CCI rats injected with the vehicle nanoemulsion (C, H, M) do not exhibit CD68, COX-2 and 
PGE-2 expression. Bar = 150 μm. n = total number of regions of interest (ROIs) in (P) and 
number of macrophages chosen in (Q, R) from a total of three rats in either of the CCI groups. 
Bars represent Mean ± SEM. This figure is reproduced from Janjic et al. Journal of 
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Neuroimmunology. Volume 318, Pages 72-79. (2018). Kiran Vasudeva produced the figure and 
contributed all panels.  
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Chapter IV. 

Results: Nanomedicine-driven neuropathic pain relief in rat model 

is associated with macrophage polarity and mast cell activation 

 

Muzamil Saleem, Brooke Deal, Emily Nehl, Jelena M. Janjic, John A. Pollock 

Results section reprinted from Saleem et al. Acta Neuropathologica Communications 

volume 7, Article number: 108 (2019) 
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• E.N assisted in optimizing immunofluorescence staining procedures.  

 

 

Results  

 

Nanomedicine treatment relieves pain-like hypersensitivity for ~6 days 

 

Manual von Frey mechanical allodynia testing was performed to measure pain-like 

hypersensitivity in rats modeled with neuropathic pain. A paw withdrawal threshold is 

calculated; a lower value infers a higher level of pain-like hypersensitivity. Baseline paw 

withdrawal thresholds were measured on two consecutive days preceding CCI and sham CCI 

surgery—where no statistical difference is seen between testing groups (Fig. 8a, b). The animals 

were given 1 day of rest following surgery, before resuming von Frey testing on consecutive 

days until they were euthanized on day 12 or day 18, depending on the testing group. 

Nanomedicine (CXB-NE) or vehicle (DF-NE) is injected on day-8 following surgery due to a 

significant increase (p < 0.0001) in pain-like hypersensitivity at this time-point in CCI compared 

to sham rats (Fig. 8a, b line 1). Following injection at day 8, nanomedicine treated rats (CXB-

NE) show similar pain-like hypersensitivity to vehicle-treated rats (DF-NE), which is 

significantly higher (p < 0.0001) compared to sham rats (Fig. 8a, b line 2). At day 12 following 

surgery, CCI animals treated with nanomedicine (CXB-NE) showed a significant (p < 0.0001) 

reversal in pain-like hypersensitivity (Fig. 8a, b lines 4, 5); and the group that received vehicle 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
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treatment showed significantly increased (p < 0.0001) pain-like hypersensitivity (Fig. 8a, b line 

3). At day 18 following surgery, the nanomedicine treatment group returned to levels of pain-like 

hypersensitivity resembling that of the vehicle group; a significant difference (p < 0.0001) from 

the pain-relief state seen at day 12 (Fig. 8a, b line 6). 

 

 

NIRF signal accumulation at the inflamed sciatic nerve of live animals is lowered after 

nanomedicine treatment 

 

NIRF signal in live animals is imaged in a preclinical fluorescence imager under 

anesthesia before and after injection of nanomedicine (CXB-NE) or vehicle (DF-NE) on day-8 

after surgery, and then on day 11 in one group, and day 17 in another. We have previously 

shown that nanoemulsion is phagocytosed by macrophages 44,72, before infiltrating the sciatic 

nerve of CCI rats—and that a measurable NIRF signal is detected above the ipsilateral sciatic 

nerve in live animals at day 11 post-surgery 23,24. In the present study, we show that at pre-

injection (day 8), there is no NIRF signal above the ipsilateral sciatic nerve of CCI animals 

(Fig. 8d). By day 11 we see a strong signal in the vehicle-treated CCI animals (Fig. 8e) and a 

significantly (p = 0.0173) reduced NIRF signal in nanomedicine treated animals (CXB-NE) 

(Fig. 8c, f). At day 17 post-surgery there is no significant difference between the level of NIRF 

signal in the DF-NE condition (Fig. 8g) compared to the CXB-NE (Fig 8. H) group. The NIRF 

signal in the day 17 vehicle-treated group (Fig. 8c, g) is significantly lower (p = 0.0040) than the 

day 11 vehicle group (Fig. 8c, e). 

 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
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Figure 8. Mechanical stimulus-evoked pain-like hypersensitivity testing and live animal NIRF 

imaging.  

The manual up-down von Frey test is performed on the days outlined in Fig. 3a to evaluate 
mechanical allodynia. Panel a shows results from daily testing, and panel b summarizes 50% 
withdrawal thresholds at day-8, day 12, and day 18. At day 8, both CCI animal groups are 
significantly more hypersensitive than sham CCI animals (a and b). Nanomedicine is injected 
after behavioral testing is completed on day 8. The CCI animals given CXB-NE show a 
significant reversal in withdrawal thresholds at day 12, a level similar to the sham CCI group 
(a and b). The reversal in pain-like hypersensitivity lasts for approximately 6 days (shown in a, 
day 9 to 14; ****p < 0.0001, *p = 0.0257, two-way ANOVA with Tukey’s posthoc test) and by 
day 18 the withdrawal threshold lowers back to a level indicative of a chronic pain state 
(a and b). All associated data analysis can be found here 
[57]: https://doi.org/10.6084/m9.figshare.8287823.v1. Whole-body live-animal NIRF imaging is 
performed on day 11 and day 17, the evening before day 12 and day 18 animals respectively are 
euthanized, and perfusion fixed. In the live animals at day-11, there is a significant decrease in 
NIRF signal in CCI animals given CXB-NE (c and f) compared to animals administered with 
DF-NE (c and e). The animals show no fluorescence at day 8, prior to injection (d). At day 17, 
NIRF signal at the site of the ipsilateral sciatic nerve is significantly decreased in the CCI group 
given DF-NE (g). A similar level of NIRF signal is observed at day 17 in the CCI group given 
CXB-NE (h). Pain behavior data is represented as mean ± SD (n = 7–29 animals; *p < 0.05, 
****p < 0.0001, one-way ANOVA with Tukey’s posthoc test). In vivo imaging data is 
represented as mean ± SEM (n = 7 animals; *p < 0.05, **p < 0.01, one-way ANOVA with 
Tukey’s post hoc test). This figure is reproduced from Saleem et al. Acta Neuropathologica 
Communications. Volume 7, Article number: 108 (2019). Link: 
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/2. 
Muzamil Saleem performed related experiments and produced the figure. 

 

 

Ex vivo tissue analysis of macrophage infiltration at the affected sciatic nerve confirms a 

reduction in inflammation 

 

Macrophage infiltration at the ipsilateral sciatic nerve of CCI rats was assessed by anti-

CD68 immunofluorescence staining. A significant reduction (p < 0.0001) in infiltration is 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig1
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#ref-CR57
https://doi.org/10.6084/m9.figshare.8287823.v1
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/2
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revealed at day 12 in nanomedicine (CXB-NE) treated rats (Fig. 9b, e). At day 18, there is no 

effect of CXB-NE treatment (Fig. 9c, d, e), and significantly reduced (p < 0.0001) macrophage 

infiltration in the vehicle group (DF-NE) compared to day 12 (Fig. 9a, c, e). Infiltration in the 

day 18 nanomedicine treatment group resembles levels seen in the day 12 CXB-NE and day 18 

DF-NE groups (Fig. 9b, c, d). The percentage of infiltrating macrophages that are positive for 

nanomedicine NIRF signal was analyzed, and in both conditions at the injured sciatic nerve, 

constitutes approximately 60% of macrophages (Fig. 9. e). 

 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig3
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig3
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig3
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig3
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Figure 9. Macrophage infiltration at the ipsilateral sciatic nerve and associated DRG.  

At day 12, macrophage infiltration to the ipsilateral sciatic nerve is significantly reduced in the 
CXB-NE group (b and e), compared to the DF-NE group (a and e) (p < 0.0001). There is no 
significant difference between DF-NE and CXB-NE groups at day 18 (c, d and e). At both day 12 
and day 18, the percentage of sciatic nerve infiltrating macrophages that are positive for 
nanomedicine ranges from 59 to 63% (e). A measure of macrophage infiltration per DRG cell 
body is calculated. These percentages are lower at the DRG: 19% in the day 12 DF-NE 
condition, 21% in the day 12 CXB-NE condition, 12% in the day 18 DF-NE condition and 13% 



 

58 

in the day 18 CXB-NE condition (j). Seen here in this animation are nanoemulsion droplets 
inside macrophages [58]: https://doi.org/10.6084/m9.figshare.8142962. In the DRG, there is no 
significant difference between the DF-NE and CXB-NE groups at both day 12 and day 18. 
Macrophage infiltration at the ipsilateral L4 and L5 DRG is significantly higher at day 18 in 
both the DF-NE (p <0 .0001) and CXB-NE (p < 0.0001) groups (h, i and j) compared to 
respective groups at day 12 (f and g). All scale bars are 15 μm. Data is represented as 
mean ± SEM (n = 3 animals, 19–42 ROI; ****p < 0.0001, one-way ANOVA with Tukey’s post 
hoc test). This figure is reproduced from Saleem et al. Acta Neuropathologica Communications. 
Volume 7, Article number: 108 (2019). Link: 
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/3. 
Muzamil Saleem performed related experiments and produced the figure. 

 

 

Nanomedicine treatment does not reduce macrophage infiltration at the L4 and L5 DRG 

associated with the inflamed sciatic nerve 

 

The L4 and L5 DRG are associated with the sciatic nerve—approximately 98-99% of all 

sciatic nerve DRG cell bodies are located here 106. Macrophage infiltration at the DRG was 

quantified by calculating the average number of macrophages per cell body. CD68 analysis of 

DRG neurons revealed a significant increase of macrophage infiltration at day 18 compared to 

day 12 in both the vehicle (p < 0.0001) and nanomedicine (p < 0.0001) treated groups (Fig. 9f-j). 

Nanomedicine treatment did not significantly reduce macrophage infiltration to the ipsilateral 

DRG of CCI rats in either the day 12 or day 18 groups. Approximately 20% of macrophages 

infiltrating the DRG at day 12 are positive for nanomedicine. This percentage approximately 

halves at day 18, indicating clearance of macrophages, and infiltration of new monocytes. 

 

 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#ref-CR58
https://doi.org/10.6084/m9.figshare.8142962
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/3
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig3
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COX-2 positive macrophages in the ipsilateral sciatic nerve are significantly reduced 

following nanomedicine treatment 

 

Tissue sections from the ipsilateral sciatic nerve were multi-stained with anti-CD68 

(macrophage marker) and an antibody against the COX-2 enzyme (Additional file 1: Table S1. 

Link: https://static-content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-

y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf ) as well as the nuclear stain DAPI. The 

fluorescence intensity from these stains, as well as the NIRF signal emitted from the 

nanomedicine, was captured with four laser imaging channels using confocal microscopy. By 

counting individually labeled macrophages during image analysis, in addition to a measurement 

of macrophage infiltration, it was possible to calculate the percentage of these infiltrating 

macrophages that were positive for COX-2 expression and the presence of nanomedicine. The 

dose of nanomedicine is not saturating; not every macrophage is expected to have accumulated 

nanomedicine. At day 12, a remarkable 56.5% reduction (Fisher’s exact test, p < 0.0001) in 

COX-2 positive macrophages was observed in rats that were treated with nanomedicine (CXB-

NE) (Fig. 10a, b, e, f). Levels of COX-2 positive macrophages in the CXB-NE group at day 18 

were similar to those seen in the vehicle-treated day 12 group (Fig. 4a10a, c, d, e, g, h). Of the 

COX-2 positive macrophages, the highest extent of nanomedicine colocalization was seen in the 

day 12 nanomedicine treatment group (Fig. 10f)—significantly higher than all other groups 

(p < 0.0001). The attenuation of COX-2 by CXB-NE is believed to halt further induction of the 

enzyme. Protein staining for COX-2 is not indicative of whether the protein has been inactivated 

by celecoxib—although it is expected that it has been in the day 12 CXB-NE condition due to 

the reduction in PGE2. 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#MOESM1
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig4
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig4
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig4
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig4
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Extracellular PGE2 at the ipsilateral sciatic nerve is significantly reduced following 

nanomedicine treatment 

 

The expression of extracellular PGE2 was measured as a particle count at the ipsilateral 

sciatic nerve of CCI rats. A significant reduction (p < 0.0001) of extracellular PGE2 was 

observed at day 12 in nanomedicine treated rats (Fig. 10i, j, k). This coincides with the observed 

reduction of macrophage-expressed COX-2 enzyme (Fig. 10b, f), from which PGE2 is 

synthesized. At day 18, extracellular PGE2 is significantly reduced: approximately 4-fold (p < 

0.0001) in both the DF-NE group and CXB-NE group, compared to their respective groups at 

day 12.  
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Figure 10. Macrophage COX-2 and extracellular PGE2 expression is reduced following CXB-

NE treatment.  
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Macrophage expression of COX-2 enzyme and extracellular expression of its synthesized 
cytokine, PGE2, is measured at the ipsilateral sciatic nerve. There is a significant 56.5% 
reduction (Fisher’s exact test, p < 0.0001) of COX-2 positive macrophages at day 12 in the CXB-
NE group (b and f), compared to the DF-NE group (a and e). Extracellular PGE2 levels are also 
significantly reduced (p < 0.0001) (i and k) in the day 12 CXB-NE group (k) compared to the 
day 12 DF-NE group (j). The representative images--j, k, l and m—have been converted to 
binary images to more clearly reveal the extracellular PGE2, which is counted by applying a 
size threshold during analysis. The larger particles denote COX-2 stained macrophages, and the 
smaller particles represent extracellular PGE2, examples of which are represented within the 
red boxes. At day 18, the proportion of COX-2 positive macrophages in the DF-NE (c and g) and 
CXB-NE (d and h) groups rises to levels comparable to the day 12 DF-NE group (e). 
Extracellular PGE2 is significantly reduced at day 18 in both the DF-NE (i and l) (p < 0.0001) 
and CXB-NE (i and m) (p < 0.0001) groups. Macrophages positive for COX-2 were analyzed to 
report on their colocalization with nanomedicine NIRF signal (white segment in e-f). A 
significantly higher co-localization of nanomedicine with COX-2 positive macrophages was 
observed in the day 12 CXB-NE condition (p < 0.0001). All scale bars are 15 μm. The 
significance of COX-2 positive macrophage percent difference between conditions is represented 
as a Fisher’s exact test p-value; 95% confidence interval. Extracellular PGE2 data are 
represented as mean ± SEM (n = 3 animals, 16–26 ROI; ****p < 0.0001, one-way ANOVA with 
Tukey’s post hoc test). This figure is reproduced from Saleem et al. Acta Neuropathologica 
Communications. Volume 7, Article number: 108 (2019). Link: 
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/4. 
Muzamil Saleem performed related experiments and produced the figure. 

 

 

Nanomedicine treatment significantly reduces the number of M1 pro-inflammatory 

macrophages while increasing the number of M2 anti-inflammatory macrophages in the 

sciatic nerve 

 

Tissue sections from the ipsilateral sciatic nerve were stained with CD68 (macrophage 

marker), nuclear stain DAPI and an antibody against the CD40, a marker for M1 pro-

inflammatory macrophages (Additional file 1: Table S1. Link: https://static-

content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/4
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#MOESM1
https://static-content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf
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y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf). In a separate experiment, anti-TFRC 

(Additional file 1: Table S1. Link: https://static-

content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-

y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf), a marker for M2 anti-inflammatory 

macrophages was co-stained alongside CD68-positive macrophages and DAPI. The fluorescence 

signal from these stains, as well as the NIRF signal emitted from the nanomedicine, was captured 

in multiple imaging channels using confocal microscopy. The percentage of macrophages 

positive for either M1 or M2 markers was calculated, in addition to counting the proportion of 

these cells positive for nanomedicine. A 27.5% reduction (Fisher’s exact test, p < 0.0001) of M1 

macrophages was measured in ipsilateral sciatic nerve tissue of nanomedicine treated (CXB-NE) 

CCI rats (Fig. 11b, f) compared to the day 12 vehicle treatment group (Fig. 11a, e). At day 18, 

the percentage of M1-positive macrophages in the nanomedicine (CXB-NE) group increased by 

56.7% (Fisher’s exact test, p < 0.0001), compared to day 12. There is a remarkably significant 

69.0% increase (Fisher’s exact test, p < 0.0001) in the number of M2 anti-inflammatory 

macrophages found in nanomedicine treated rats at day 12, compared to the vehicle group 

Fig. 11i, j, m, n). The proportion of M2-positive macrophages shows a decrease of 41.8% 

(Fisher’s exact test, p < 0.0001) at day 18 compared to day 12 in nanomedicine treatment groups 

(Fig. 11j, n, l, p). Nanomedicine NIRF colocalization with M2 macrophages is significantly 

lower in both the DF-NE (Fisher’s exact test, p < 0.0001) and CXB-NE (Fisher’s exact 

test, p < 0.0001) groups at day 18 compared to day 12 (Fig. 11m-p), suggesting that there is a 

population of M2 macrophages that have fused to form MGCs. At day 18, nanomedicine NIRF 

colocalization with M2 macrophages is significantly lower (Fisher’s exact test, p = 0.000376) in 

https://static-content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#MOESM1
https://static-content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig5
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig5
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig5
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig5
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig5


 

64 

the CXB-NE condition compared to the DF-NE condition, likely indicating that a greater 

proportion of M2 macrophages have fused to form MGCs. 
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Figure 11. Macrophage polarity shifts from pro-inflammatory M1 to anti-inflammatory M2 

phenotype in the day 12 CXB-NE group.  

There is a 27.5% reduction (p < 0.0001) in M1 pro-inflammatory macrophages in the day 12 
CXB-NE group (b and f) compared to the day 12 DF-NE group (a and e). At day 18 the 
percentage of M1 macrophages increases by 56.7 to 85.7% in the nanomedicine treated (CXB-
NE) rats, compared to day 12 (d and h). At day 18, levels of M1-positive macrophages rise to 
91.4% per ROI in the DF-NE group (c and g). There are no significant differences in 
nanomedicine co-localization with M1 macrophages. The percentage of anti-inflammatory M2 
macrophages increases significantly (p < 0.0001) by 69.0% in the day 12 CXB-NE group 
(j and n) compared to the DF-NE animals (i and m). At day 18, the proportion of M2 
macrophages in the CXB-NE group (l and p) drops significantly (p < 0.0001) by 41.8%, whilst 
there is no significant difference in the DF-NE group at day 18 (k and o), compared to day 12 
(i and m). M2 macrophages in the day 18 conditions show a significantly lower nanomedicine 
NIRF colocalization compared to both the DF-NE (Fisher’s exact test, p < 0.0001) and CXB-NE 
(Fisher’s exact test, p < 0.0001) day 12 groups. At day 18, the percentage of M2 macrophages 
that are positive for nanomedicine NIRF signal is significantly lower in the CXB-NE group 
(Fisher’s exact test, p = 0.000376) compared to the DF-NE group. All scale bars are 15 μm. The 
significance of M1 and M2 positive macrophage percent difference between conditions is 
represented as a Fisher’s exact test p-value; 95% confidence interval. n = 3 animals, 21–33 ROI. 
This figure is reproduced from Saleem et al. Acta Neuropathologica Communications. Volume 7, 
Article number: 108 (2019). Link: 
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/5. 
Muzamil Saleem performed related experiments and produced the figure. 

 

 

CD68-positive multinucleated giant cells (MGCs) in the ipsilateral sciatic nerve appear 

prominently by day 18 following surgery, and at significantly higher counts following 

nanomedicine treatment 

 

During an inflammatory reaction, monocytes and macrophages can fuse to form 

multinucleated giant cells (Fig. 12a, b). Composed of several fused cells, MGCs were observed 

to be approximately 20 – 30 µm at their greatest diameter (Fig. 12a, b; white arrows), and 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/5
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internalized NIRF signal from the nanomedicine was observed (Fig. 12a, b; green arrows).  

Positively stained with anti-CD68, virtually no MGCs were seen at day 12 in either the 

nanomedicine or vehicle treatment groups (Fig. 12c). However, MGCs were observed in greater 

quantities at day 18, with significantly higher counts (p < 0.0001) in the nanomedicine treatment 

group (Fig. 12c).   

 

 

Figure 12. Macrophage fuse to form multinucleated giant cells at day 18.  
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Macrophages can fuse to form multinucleated giant cells (a, b). MGCs were observed at higher 
numbers at day 18, in both the CXB-NE and DF-NE conditions (c). The day 18 CXB-NE group 
had significantly more MGCs compared to the day 18 DF-NE (p < .0001) and the day 12 CXB-
NE (p < .0001) groups (c). White arrows point to CD68 staining showing macrophages fused 
into MGCs. Yellow arrows indicate a nanomedicine signal inside MGCs. Seen here in this 
animation are M2 macrophages fused to form a multinucleated giant cell 
[59]: https://doi.org/10.6084/m9.figshare.8142950. DAPI stained nuclei are blue, CD68 stained 
MGCs composed of macrophages are green, and the NIRF from nanomedicine (NANO) is 
purple. Panel a is a merge of DAPI, CD68 and nanomedicine channels (NANO); and panel b is 
a merge that additionally includes a DIC channel in order to visualize nerve tissue morphology. 
All scale bars are 20 μm. Data are represented as mean ± SEM (n = 3 animals, 48–59 ROI; 
****p < 0.0001, one-way ANOVA with Tukey’s post hoc test). This figure is reproduced from 
Saleem et al. Acta Neuropathologica Communications. Volume 7, Article number: 108 (2019). 
Link: https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/6. 
Muzamil Saleem performed related experiments and produced the figure. 

 

 

Number of infiltrating mast cells in the ipsilateral sciatic nerve is significantly reduced 

following nanomedicine treatment and not in the ipsilateral DRG 

 

Mast cells are a key component of the inflammatory response and are integral in the 

potentiation of chronic pain 82. In addition to resident populations in most tissues, there is a 

circulation of mast cell progenitors in the blood, which can infiltrate sites of inflammation 107. 

Given the crosstalk between mast cells, other immune cells – such as macrophages – and the 

nervous system, we investigate mast cell expression at the ipsilateral sciatic nerve and associated 

L4 and L5 DRG. The number of mast cells – indicated by positive staining for Mcpt1 – were 

counted for each region of interest from sciatic nerve tissue and DRG sections. The number of 

mast cells per ROI was significantly reduced (p = 0.0014) in the CXB-NE nanomedicine treated 

rats (Fig. 13c) at day 12 compared to the DF-NE vehicle-treated group (Fig. 13b). There was a 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#ref-CR59
https://doi.org/10.6084/m9.figshare.8142950
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/6
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reduction in mast cell numbers in both treatment groups at day 18 (Fig. 13d, e). There were 

significantly less (p = 0.0303) mast cells per ROI at day 18 in the vehicle treatment group (Fig. 

13d) as compared to day 12 (Fig. 13b). In the location of the ipsilateral DRG cell bodies, there 

are no significant differences between mast cell numbers among treatment groups, suggesting 

that the cells are resident in this location, and have not infiltrated. 

 

 

Mast cell degranulation is significantly reduced following nanomedicine treatment 

 

The diverse effector functions of mast cells are mediated by the secretion of a wide variety of 

biologically active products that are contained in secretory granules. Extracellular staining of 

Mcpt1 was indicative of a major component of mast cell granules, and particle counts were 

interpreted as the extent of mast cell degranulation. The number of Mcpt1 particles per ROI was 

significantly reduced (p < 0.0001) in the ipsilateral sciatic nerve milieu in the CXB-NE 

nanomedicine treated rats at day 12 (Fig. 13f, h) compared to the day 12 vehicle-treated group 

(Fig. 13f, g). It was observed that the granule number per ROI remains at similar levels in the 

day 18 vehicle group (Fig. 13f, i) and is measured at similar levels again in the day 18 

nanomedicine treated group (Fig. 13f, j), a significant increase (p < 0.0001) compared to the day 

12 nanomedicine treated rats (Fig. 13f, h). In the ipsilateral DRG, there is no treatment effect 

influencing extracellular Mcpt1 particles (Fig. 13k), however, there is a significant increase 

(Fig. 13p, s, t) in both treatment conditions at day 18 compared to day 12 (p < 0.0001). 

 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig7
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig7
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig7
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig7
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig7
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig7
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig7
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Figure. 13. Mast cell number and extracellular Mcpt1 particles are lowered in ipsilateral sciatic 

nerve following CXB-NE treatment.  

The number of mast cells and extracellular Mcpt1 particles, both stained with anti-Mcpt1 
antibody, are counted for each region of interest on tissue sections at the ipsilateral sciatic nerve 
of CCI animals at both day 12 and day 18. The mast cell number per ROI decreases significantly 
(a) in the CXB-NE condition (c) at day 12 (p = 0.0014) compared to the DF-NE condition (b). At 
day 18, both the CXB-NE (e) and DF-NE (d) conditions have significantly fewer mast cells per 
ROI compared to the DF-NE condition at day 12. Also notable is that there are significantly less 
(p = 0.0303) mast cells per ROI at day 18 (d) in the DF-NE condition compared to day 12 (b). 
There are no significant differences in mast cell counts among treatment groups in the DRG. The 
representative images--g, h, i and j—have been converted to binary images to better show Mcpt1 
particles, which are counted by applying a size threshold during analysis. Mcpt1 particles per 
ROI are significantly reduced (p < 0.0001) at the ipsilateral sciatic nerve milieu in the day 12 
CXB-NE condition (h) compared to the day 12 DF-NE group (g). Interestingly, the particle 
number per ROI remains at similar levels in the day 18 DF-NE group (i) and is observed at 
similar levels again in the day 18 CXB-NE group (j), a significant increase (p < 0.0001) 
compared to the day 12 CXB-NE group (h). In the DRG, there is no significant difference 
between treatment conditions in either the day 12 or day 18 groups, however both conditions 
show a significant increase in Mcpt1 particles at day 18 (p < 0.0001). All scale bars are 15 µm. 
Data is represented as mean ± SEM (n = 3 animals, 14-26 ROI; *p<.05, **p<.01, ****p<.0001, 
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one-way ANOVA with Tukey’s post hoc test). This figure is reproduced from Saleem et al. Acta 
Neuropathologica Communications. Volume 7, Article number: 108 (2019). Link: 
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/7. 
Muzamil Saleem performed related experiments and produced the figure. 

 

 

Supplementary figures 

 

 

Figure 14. Clearance of NIRF signal from the liver.  

Supplementary figure from published paper 87 (https://static-
content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-
y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf).  

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/7
https://static-content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1186%2Fs40478-019-0762-y/MediaObjects/40478_2019_762_MOESM1_ESM.pdf
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Chapter V. Discussion and conclusions 

Discussion and conclusion of results presented in chapter III 

 

With the intravenous injection of drug loaded nanoemulsion the animal experiences a significant 

reduction in mechanical allodynia that persists for at least four days. This single low dose 

(0.24 mg/kg of celecoxib) represents a reduction of three orders of magnitude in drug needed to 

achieve relief as compared to a traditionally effective dose of up to 30 mg/kg delivered twice 

daily for 10 days or more 108,109. The change in behavior associated with nanoemulsion therapy 

coincides with a significant reduction in inflammation at the site of injury. This is revealed by 

the non-invasive in vivo visualization of near infrared fluorescence associated with infiltrating 

macrophages that carry the nanoemulsion. Post-mortem histological examination of the affected 

sciatic nerves reveals macrophages infiltration that is reduced with the treatment using drug-

loaded nanoemulsion. Furthermore, histological examination reveals a reduction in the relative 

expression of COX-2 and PGE2 that is evident at the site of injury when the drug-loaded 

nanoemulsion is present. These data show that low-dose celecoxib incorporated in nanoemulsion 

and its uptake into activated macrophages responding to chronic constriction injury leads to 

sustained pain relief. By comparison, nerve blocks that are used extensively for anesthesia and 

pain relief can involve the local delivery of NSAID solutions via catheter, with varied analgesic 

duration and efficacy 110,111. Though rare, nerve blocks can lead to serious complications 

including nerve injuries and local anesthetic systemic toxicity 112. Unlike nerve block procedures 

that deliver drug non-selectively to all cells/tissues at the site of injury, or systemic treatments 

that deliver drugs throughout the entire body, monocyte targeted nanoemulsions loaded with 



 

72 

COX-2 inhibitors, when administered intravenously, deliver the drug directly to those cells 

modulating their infiltration patterns and the pro-inflammatory action, which leads to decrease in 

hypersensitivity and pain-like behavior in rats. Furthermore, the results presented exhibit the 

therapeutic potential of selective COX-2 inhibitors injected as theranostic nanoemulsion, which 

may provide an important avenue for targeted delivery of highly insoluble drugs and therapies 

that may provide an alternative to post-surgical opioids. 

 

 

Conclusion 

The majority of current pain therapies utilize drugs that are broadcast throughout the entire body, 

but that have a specific effect on discrete areas of either the central nervous system or the 

peripheral nervous system. To get the medicine at a sufficient concentration where it is needed 

requires doses that can endanger other tissues and organs where the drug is not needed. We 

demonstrate that a single low-dose of celecoxib can treat chronic pain for about a week when 

delivered to macrophages by nanoemulsion. As compared to traditional oral dosing given twice a 

day every day, the nanoemulsion therapy represents a reduction of the body burden of drug of 

>2000-fold; a dramatic increase of drug efficacy. 
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Discussion and conclusion of results presented in chapter IV 

 

Adapted from Saleem et al. Acta Neuropathologica Communications volume 7, 

Article number: 108 (2019) 

 

The studies constituting this thesis 23,87  report that a single low dose of celecoxib 

delivered to macrophages via nanomedicine leads to a reduction in hypersensitive pain-like 

behavior, persisting for approximately 6 days. During this state of pain relief, our data reveals 

that the number of infiltrating macrophages at the site of chronic constriction injury is reduced in 

the drug-treated condition. We also show a significant reduction in both COX-2 positive 

macrophages and extracellular PGE2 in the milieu of the nerve injury, when the drug is present. 

Furthermore, the drug influences a shift in the population of macrophages to the M2 anti-

inflammatory state. Finally, we observe that the presence of the drug reduces mast cell activation 

at the site of injury, indicated by a lower number of mast cells and extracellular Mcpt1—

indicative of secreted granules. Our study was designed to investigate the inflammatory 

neuropathology framed around two time-points—the first, when CXB-NE rats experienced peak 

relief of neuropathic pain (day 12) and the second, when pain-like behavior had returned to 

levels similar to DF-NE vehicle-treated rats (day 18). 
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Theranostic nanomedicine offers multi-day neuropathic pain relief, effectively diagnoses 

inflammation in-vivo and sheds light on the underlying mechanisms of immune cell 

pathology  

 

Administering a single low dose of celecoxib (~0.24 mg/kg) to CCI rats via intravenous 

nanomedicine delivery is effective in reversing pain-like hypersensitivity as reported here and 

previously 23. It is well known that NSAIDs like celecoxib have poor efficacy in treating 

neuropathic pain 113, however this is in the context of non-targeted approaches whereby drugs are 

delivered either orally or parenterally, and consequently made systemically available. Intrathecal 

injections also do not meet our design criteria as presented here. In our earlier work and in this 

study, we demonstrated a dramatic improvement in the efficacy of celecoxib once it is included 

into a nanoemulsion preparation. The key is that in this paradigm, the COX-2 inhibitor, 

celecoxib, is directly delivered to the target—the COX-2 enzyme in the monocyte, rather than 

other cell types and tissues. The nanoemulsion droplets provide an intracellular depo for the drug 

to successfully inhibit the COX-2 enzyme in these cells. Dr. Janjic has designed this approach as 

a means of dramatically enhancing the efficacy of COX-2 inhibition in inflammatory diseases 

such as neuropathic pain. In earlier studies we have demonstrated that targeted COX-2 inhibition 

by nanoemulsions can produce marked pain relief in a rat model of neuropathic pain 23,57. This, 

in our view, promises to be both a safer and more effective strategy than CNS-targeted 

treatments such as opioids, which are rife for potential abuse and have the potential to result in 

significant toxicity. Opiate drugs bind to opioid receptors in neurons, and mimic the effects of 

endogenous opioid ligands 114—they produce an analgesic effect by inhibiting neurotransmitter 

release in nociceptive pathways. Whilst originally thought of as acting on opioid receptors on the 
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plasma membrane of neurons, it has recently been discovered that opioid drugs also act on the 

membrane of endosomes and structures such as the Golgi apparatus 115, hence distorting the 

length of receptor activation and signaling. This could potentially explain the undesired effects of 

opioid drugs. Considering this, it becomes even more prudent to focus pain medication on the 

underlying cause.   

This study demonstrates a peak relief from pain on the third and fourth day after 

nanomedicine treatment and persists for up to 6 days after the injection (Fig. 8a, b). In addition to 

the therapeutic utility of the nanomedicine, it exhibits a diagnostic function—able to report on 

the amount of macrophage infiltration—an indication of the extent of underlying inflammation. 

The NIRF signal emitted by the nanomedicine is predictably reduced in nanomedicine-treated 

rats when their right thighs are imaged at day-11 after surgery (Fig. 8c, f). However, when 

imaged the night before being euthanized at day 18 post-surgery, the NIRF signal is reduced in 

both the nanomedicine and vehicle-treated groups (Fig. 8c, g, h). This may be due to the turnover 

of macrophages and the relative clearance of the nanomedicine over time from the body of the 

rats. Additionally, it is also feasible that the process of wound healing at the surgical incision site 

has rendered a reduced number of pro-inflammatory macrophages. Also, we show in a 

biodistribution study that the relative NIRF signal emitted from the liver in both nanomedicine 

and vehicle-treated rats is reduced at day 18 as compared to day 12 after surgery (Fig. 14), which 

is suggestive of macrophage clearance from the body. A study investigating the organ-specific 

fate of macrophage recruitment and refilling found that inflammatory monocytes repopulate the 

spleen and liver, and not the lung 116. Biodistribution analysis in the spleen did not show any 

significant differences of NIRF signal among testing groups or between time-points. This is 

likely due to the autofluorescence often observed in this organ as a result of it being blood dense. 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig2
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Interesting to note is that a significantly large population of undifferentiated monocytes—

outnumbering the population in the circulation—are stored in the spleen 117, from where they can 

be quickly deployed to injured tissue.   

 

 

Macrophage infiltration is reduced in the inflamed sciatic nerve and not the associated L4 

and L5 DRG following nanomedicine treatment  

 

An inflammatory response that is localized to the nervous system is termed 

neuroinflammatory and can be caused by infection, autoimmunity and tissue injury. These insults 

provide cues that are followed by the initiation of inflammation, which causes plasma 

extravasation and infiltration of immune cells such as neutrophils, T cells, and monocytes, as 

well as mobilizing resident macrophages and mast cells 28. Monocytes and neutrophils are 

circulating phagocytes that can be signaled during an immune response. Monocytes are 

especially dynamic because they can be signaled from the blood circulation to infiltrate sites of 

inflammation and differentiate into macrophages. They are also the most abundant infiltrating 

immune cell arriving at injured nerve tissue 118. This blood to tissue migration of the monocyte—

as well as its phagocytosis of foreign materials—underpins the design of nanomedicine targeting 

the inflammation that gives rise to chronic pain. The hypothesis: attenuation of COX-2 activity 

in these monocytes fated to infiltrate the CCI sciatic nerve using nanomedicine loaded with 

celecoxib will reduce pain-like hypersensitivity. Reducing COX-2, in turn, reduces the 

recruitment of additional immune cells and, hence reduces inflammation. 
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We have previously shown that fewer macrophages infiltrate the injured sciatic nerve at 

day 12 following nanomedicine treatment 23. This study sought to report on the extent of 

infiltration at day 18—a time when pain relief has diminished. Additionally, we aimed to 

investigate the infiltration of monocytes into the associated L4 and L5 DRG of the sciatic nerve. 

We confirm our previous finding that nanomedicine (CXB-NE) treated rats show a 

reduction in macrophage infiltration at the injured sciatic nerve tissue isolated at day 12 (Fig. 3). 

There is no effect of treatment at day 18, and additionally, there is no increase in infiltration at 

day 18; in fact, there is a significant reduction (p < 0.0001) in the vehicle-treated group (Fig. 3). 

It is anticipated that macrophage infiltration does not proceed at a constant rate throughout the 

inflammatory response and that by day 18, has shifted to a lower turnover rate—a point at which 

the macrophage population is contributing to both Wallerian degeneration and axonal 

regeneration 119. 

The ipsilateral L4 and L5 DRG neurons associated with the injured sciatic nerve show no 

reduction in macrophage infiltration following nanomedicine treatment. As reported in a 

previous study 120, we show that macrophages accumulate over time in the chronic pain-affected 

DRG—with a significant increase in infiltration evident at day 18 compared to day 12. 

The rationale for focusing the present study on monocyte phagocytosis of nanomedicine 

and migration to the injured sciatic nerve is due to this cell type being the most abundant 118 at 

sites of tissue injury. Neutrophils are another type of phagocyte that are abundant early at the site 

of injury or infection 121, however our earlier reports confirm specificity for monocyte uptake of 

the designed nanomedicine, and the selective inhibition of COX-2 intracellularly using this 

approach 57. Numerous studies have also shown preference of nanoemulsion uptake into 

monocytes compared to other cell types 122–124. Interestingly, it has recently been shown that 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig3
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig3
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neutrophils are not a phenotypically homogenous population as originally believed, and that like 

macrophages, possess a phenotypic versatility based on function 125. It would hence be prudent in 

the future to design new nanoemulsions specifically targeted to neutrophils in order to study their 

phagocytic and transport potential in the context of neuroinflammation and pain pathology in the 

PNS. 

 

 

Nanomedicine treatment significantly reduces the proportion of COX-2 positive 

macrophages and extracellular PGE2 at day 12 but not day 18 

 

In the day 12 nanomedicine treatment group, we demonstrate a significant reduction 

(p < 0.0001) in the percentage of COX-2 positive macrophages (Fig. 4), and the quantity 

(p = 0.0029) of extracellular PGE2 (Fig. 4) at the injured sciatic nerve. The percentage of COX-2 

positive macrophages at day 18 reverts to a level resembling that in the day 12 vehicle-treated 

group, whilst extracellular PGE2 levels fall significantly (p < 0.0001) in both treatment groups at 

day 18 (Fig. 4). We focus here on macrophages either being positive or negative for COX-2 and 

subsequently reporting a percentage that is positive. In terms of PGE2, we shift the focus on 

extracellular expression; the rationale being that a release of PGE2 from macrophages is a more 

conclusive measure of a pro-inflammatory state. Additionally, cells that are positive for both 

COX-2 and nanomedicine are revealed; there is a higher percentage of nanomedicine-positive 

macrophages (also positive for COX-2) in the day 12 nanomedicine treated group, compared to 

all other groups. The celecoxib treatment attenuates COX-2 by blocking the protein’s activity 107, 

not destroying COX-2. 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig4
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig4
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig4
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Nanomedicine treatment drives macrophages to switch polarity to an anti-inflammatory 

phenotype  

 

The macrophage is a pleiotropic cell type, that not only promotes inflammation but is 

also involved in its resolution, as well as tissue repair and remodeling 126–128. A heterogeneous 

population of macrophages can switch phenotype to serve these diverse functions; they can 

acquire pro-inflammatory (termed M1), and anti-inflammatory (termed M2) phenotypes. It was a 

goal of this study to determine the pro-inflammatory and anti-inflammatory phenotypes of 

infiltrating macrophages to the site of sciatic nerve injury, and subsequently, determine if the 

composition of M1 and M2 macrophages changes in response to nanomedicine treatment. A 

recent proteomic study [5] that proposed cell membrane markers to precisely discriminate M1 

and M2 macrophages was consulted in order to co-stain macrophages with an M1 or an M2 

marker. The antibody against TNF receptor superfamily member 5 (anti-CD40) is a marker for 

M1 macrophages, and the antibody against the transferrin receptor (anti-TFRC) is a marker for 

M2 macrophages 86. 

At day 12, there is a significant decrease (p < .0001) in the percentage of macrophages 

positive for the M1 marker following CXB-NE nanomedicine treatment (Fig. 5). Remarkably, 

the reduction in M1 macrophage percentage persists at day 18 in the nanomedicine group 

(Fig. 5). In an experiment investigating M2 macrophages at the injured sciatic nerve, 

nanomedicine treatment resulted in a significantly higher (p < 0.0001) percentage of the M2 

phenotype at day 12 compared to the vehicle group (Fig. 5). At day 18, the percentage of M2 

macrophages in the nanomedicine treatment group decreases significantly (p < 0.0001), 

compared to day 12 (Fig. 5). The increase in M2 macrophages appears to be lower than the 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#ref-CR5
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig5
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig5
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig5
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig5
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reduction in M1 macrophages and could be explained by the fact that the M2 phenotype is the 

default state of resident macrophages 84, hence why the differences in the M2 phenotype 

proportion are not as pronounced as M1. 

This result indicates an important shift in macrophage polarity from M1 to M2 in the pool 

of macrophages at the injured sciatic nerve following nanomedicine treatment. Taken with our 

findings regarding macrophage COX-2 and external PGE2 expression, the polarity shift indicates 

that the nanomedicine is attenuating COX-2 activity inside the macrophage, leading to a 

reduction in extracellular PGE2 and by doing so is switching the macrophage to an anti-

inflammatory M2 phenotype. This M2 phenotype is consequently equipped to promote axonal 

regeneration 119. 

 

 

Multinucleated giant cells form from M2 macrophages and are observed at day 18, 

predominantly in the nanomedicine treatment group 

 

We noted the presence of significantly more multinucleated giant cells in the 

nanomedicine treated rats at day 18. These are formed from the fusion of their M2 polarized 

macrophage precursors 84,88, and function to more effectively phagocytose relatively large debris 

from tissues. Significantly more MGCs are observed in the nanomedicine treated group at day 

18. Building on the finding that there is a polarity shift towards the M2 phenotype, it can be 

hypothesized that M2 macrophages have fused into MGCs in order to perform their tissue 

healing functions in a more efficient manner. This is further evidenced by comparing the 

nanomedicine NIRF colocalization with M2 macrophages between day 12 and day 18 groups. 



 

81 

There is a significant decrease in nanomedicine-positive M2 macrophages at day 18 in both the 

DF-NE (Fisher’s exact test, p < 0.0001) and CXB-NE (Fisher’s exact test, p < 0.0001) groups. 

Additionally, the increase in MGCs in the CXB-NE condition at day 18 coincides with a 

decrease in nanomedicine NIRF positive M2 macrophages (Fisher’s exact test, p = 0.000376); 

this suggests that more M2 macrophages have fused to form MGCs in this condition. 

 

 

The shift in macrophage polarity is associated with a reduction in mast cell activation 

 

Mast cells mature from recruited progenitors released from the bone marrow into the 

blood circulation 107 and are a key effector cell of the innate immune system. They are involved 

in the first response to an insult to organs or tissues 129 and influence subsequent inflammatory 

events—for example, by activating macrophages 130,131. Factors released when mast cells 

degranulate can also sensitize nociceptors and lead to increased pain pathogenesis 132. These can 

include TNAα 133, IL-1β 134, and tryptase—which interacts with protease-activated receptor 2 

(PAR2) on nociceptors 135,136. This response manifests as the initiation, amplification, and 

prolonging of inflammation. We report here that the number of mast cells is significantly 

decreased (p = 0.0014) at day 12 in nanomedicine treated rats (Fig. 7). The mast cell number per 

ROI is not affected by drug treatment at day 18 (10 days after the single injection of 

nanomedicine). However, the vehicle-treated group reveals significantly fewer (p = 0.0303) mast 

cells at the injured sciatic nerve at day18 compared to day 12 (Fig. 7). Mast cell degranulation in 

the injured sciatic nerve is significantly lowered at day 12 in the CXB-NE nanomedicine treated 

rats, indicated by a reduction in extracellular Mcpt1 particles. By day 18, levels of Mcpt1 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig7
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig7
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particles in the nanomedicine treated rats revert to levels resembling the vehicle treatment group 

at day 12, increasing significantly (p < 0.00001). In the DRG, there is no treatment effect either 

at day 12, or day 18, which could suggest that the mast cells in this location are resident and have 

not infiltrated from blood-borne progenitors. There is, however, a significant increase 

(p < 0.0001) in mast cell degranulation in ipsilateral DRG in both treatment conditions at day 18, 

compared to day 12. Much like the increase in macrophage infiltration to the DRG observed at 

day 18, it is proposed that the increased mast cell degranulation is a result of ongoing neurogenic 

inflammation conducted from the injured sciatic nerve (Fig. 8). 

Based on our data, we have proposed mechanisms for the immune-cell neuropathology 

underlying the neuropathic pain state, a state where there is pain relief and a final state where 

there is a return to pain-like behavior (Fig. 8). Taken together, our results suggest a link between 

the predominant pool of M1 macrophages at the injured sciatic nerve of rats administered with 

DF-NE vehicle nanomedicine, along with a higher percentage of COX-2 positive macrophages 

and a higher expression of extracellular PGE2. This inflammatory macrophage phenotype 

functions as an immune effector system, signaling to other cells—such as resident mast cells—to 

perpetuate inflammation via their activation, and subsequent degranulation (Fig. 8a). The 

majority of M1 macrophages are fated to die, terminated by their nitrous oxide production 84, 

whilst M2 macrophages are involved in resident tissue functions such as repair and regeneration, 

which conceivably requires them to be alive for longer. 

We propose that in the ‘pain relief’ state driven by CXB-NE nanomedicine, the 

inactivation of COX-2 and reduction in the production and release of PGE2 causes a shift 

towards an anti-inflammatory M2 macrophage phenotype (Fig. 8b). There is hence a reduction in 

macrophage crosstalk with mast cells—i.e. they are not activated—resulting in reduced local 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig8
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig8
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig8
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig8
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inflammation at the ipsilateral sciatic nerve. An effect of reduced inflammation is a lower 

potential for macrophage and mast cell infiltration, a result which we observe. 

Figure 15. Proposed mechanisms underlying reversal of pain-like behavior at day 12 and 

diminished relief at day 18.  

In a neuropathic pain state, CCI rats administered with DF-NE vehicle nanomedicine exhibit 
pain-like behavior (a). This is proposed to be centrally driven by the expression of functional 
COX-2 in circulating monocytes and increased release of PGE2. The polarity of macrophages at 
the injured sciatic nerve is predominantly the M1 pro-inflammatory phenotype. This influences 
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crosstalk with mast cells, and their subsequent activation. With both immune effector cell types 
in an activated state, local inflammation is increased, resulting in a subsequent increase in 
macrophage infiltration. Inflammation at the ipsilateral DRG is transmitted through the afferent 
nociceptors from the injured sciatic nerve via neurogenic inflammation. In nanomedicine treated 
rats in the day 12 group (b), there is a reduction in COX-2 positive macrophages and 
extracellular PGE2 via the action of nanomedicine-delivered celecoxib. There is both a 
reduction in macrophage infiltration to the injured sciatic nerve and a shift of macrophage 
phenotype from pro-inflammatory (M1) to anti-inflammatory (M2). There is no nanomedicine 
treatment effect of macrophage infiltration to the DRG at day 12. M2 macrophages function to 
repair and regenerate the injured tissue and do not crosstalk with resident mast cells. There is a 
return to pain-like behavior at day 18 (c) in both nanomedicine and vehicle-treated groups. 
Macrophage infiltration to the injured sciatic nerve at day 18 is relatively low in both treatment 
groups—similar to levels observed in the day 12 nanomedicine-treated group. Macrophage 
infiltration to the DRG is increased at day 18, compared to day 12 and there are no significant 
differences between treatment groups. It is proposed that inflammation is initiated at the injured 
nerve and propagated to the associated L4 and L5 DRG via neurogenic inflammation. This 
drives recruitment of macrophages—as well as influencing further mast cell degranulation—and 
together provides the inflammatory input to sensitize nociceptors, resulting in an increase in 
pain-like behavior. The relatively low percentage of nanomedicine -positive macrophages at the 
DRG compared to the injured nerve suggests that the initial wave of macrophage infiltration is 
focused to the injured nerve. This figure is reproduced from Saleem et al. Acta Neuropathologica 
Communications. Volume 7, Article number: 108 (2019). Link: 
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/8. 
Muzamil Saleem performed related experiments and produced the figure. 

 

 

The proposed mechanism underlying the return to pain-like behavior at day 18 

 

Our data indicate that the increase in macrophage infiltration to the L4 and L5 DRG 

associated with the injured nerve of CCI animals, as well as the increase in mast cell 

degranulation, may be driving the return to pain-like behavior observed at day 18 (Fig. 8c). It has 

been demonstrated that the tactile allodynia underpinning pain-like behavior is dependent on 

peripheral macrophages 137. In addition to the immune cell infiltration to the site of nerve injury, 

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y/figures/8
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0762-y#Fig8
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it has been shown that macrophages are also abundant at the DRG 138,139, and are observed to 

circle the cell bodies of injured A-fiber sensory neurons 140. By observing the NIRF labeling of 

macrophages with nanomedicine, our data give us clues as to the relative timing of macrophage 

infiltration to the injured sciatic nerve and its associated DRG. It was observed that a lower 

percentage of macrophages infiltrating the DRG were nanomedicine positive—in both treatment 

groups—compared to the sciatic nerve, which suggests that the initial wave of infiltration is 

focused to the site of CCI surgery. It is thought that this initial wave of immune cell migration is 

initiating inflammation at the sciatic nerve and sensitizing its nociceptors. It is possible that the 

neuroinflammatory state at the DRG—characterized by the increase in macrophage infiltration—

is propagated from this sciatic nerve sensitization via a process of neurogenic inflammation 141—

a process whereby afferent neurons release inflammatory mediators such as Substance P and 

Calcitonin Gene-related Peptide (CGRP). Substance P, a neuropeptide that perpetuates the 

conduction of neurogenic inflammation, is also released by both macrophages and mast cells and 

acts on peripheral nociceptors 82 to further drive inflammation in the afferent direction. 

Inflammation is consequently perpetuated to the DRG from the peripheral nerve. Additionally, 

we have previously shown an elevated DRG expression of the TRPV1 receptor central in pain 

transmission that is also labelled with a retrograde dye applied to the footpad 24, confirming the 

path of neurogenic inflammation. 
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Conclusions 

 

Our results suggest that the central driver of nanomedicine chronic pain relief is a shift 

towards an M2 macrophage phenotype, via attenuation of intracellular macrophage COX-2.  M2 

macrophages at the injured sciatic nerve fuse to form MGCs, and then tackle the phagocytosis of 

large debris; namely dead distal nerve fibers via Wallerian degeneration. This population of anti-

inflammatory macrophages is also contributing to axonal nerve regeneration. The shift towards 

an anti-inflammatory milieu at the injured nerve is thought to result in less M1 macrophage 

recruitment—reducing inflammation, and subsequent neuropathic pain. In the absence of the 

CXB-NE COX-2 targeted nanomedicine, it is posited that the resulting pro-inflammatory 

environment at the injured nerve consists in part of M1 macrophages signaling the upregulation 

and activation of mast cells—further perpetuating neuroinflammation, which contributes to a 

neurophysiological signal propagated towards the CNS, via neurogenic inflammation. Thus, this 

inflammation is interpreted as hypersensitivity as evident in pain-like behavior.  Our data also 

points to a possible mechanism underlying the return to pain-like behavior--it becomes clear that 

the locale of the associated DRG is not influenced significantly by the day-8 macrophage-

targeted treatment. This suggests that in the absence of therapeutic influence, the 

neuroinflammatory milieu of increasing macrophage infiltration in to the DRG, and increased 

mast cell degranulation is sensitizing nociceptors, causing a return to neuropathic pain. Taken 

together, this report suggests for the first time that a pain nanomedicine phagocytosed by 

circulating monocytes that infiltrate the site of injury shifts their polarity via COX-2 attenuation, 

reduced PGE2 synthesis, and in turn, influence a reduction in mast cell activation—resulting in 

multi-day neuropathic pain relief. 
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Moreover, our investigation suggests that while immune neuropathological events at the 

site of the injured nerve can be successfully reversed with targeted immune-cell therapy, the 

spatial signature of neuroinflammation towards the CNS must also be concurrently addressed. 

Specifically, while the immune cell milieu at the injured nerve is resolving inflammation via 

nanomedicine targeted macrophages, the initial waves of neurogenic inflammation initiated and 

propagated in the afferent direction are unresolved. Hence, this results in the latent inflammation 

we reveal at day 18. Further, the utility of a nanomedicine targeted to immune cell pathology 

offers a new research paradigm that can yield dynamic investigation and tracking of temporal 

patterns of cell infiltration, phenotypic change, and alterations in gene expression. 

The utility of imaging inflammation using nanoemulsion ultimately revealed that while 

there was a favorable reversal of inflammation at the injured sciatic nerve, there was a rising 

inflammatory milieu at the DRG associated with the sciatic nerve. This highlights the need to 

address multiple points of the pain circuit: the initial site of injury or dysfunction, and also the 

affected neuronal cells bodies in the DRG to bias their activity before hypersensitivity signals 

enter the CNS.   

 

 

Future directions 

 

The scope of future studies progressing from this thesis is an exciting prospect. Having 

elucidated some aspects of the immune pathology of macrophages and mast cells in a pain vs. 
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non-pain state following nanomedicine treatment, there are further experiments that would be 

prudent.  

 

 

Repeat studies in female rats 

The foremost study that ought to follow is a replication of the experiments described in 

this thesis, utilizing female rats. It is becoming increasingly clear in the pain research field that 

there are fundamental sex differences in both the underlying biological mechanisms 142,143—

particularly with respect to immune cells 144,145 and hormones 146,147--, as well as the cognitive 

processing of pain by females. Additionally, a recent transcriptome analysis of the DRG in a 

neuropathic pain state reveals sex differences in the expression of genes related to the immune 

response and neuronal plasticity 148. Replicating this work in female rats would elucidate not 

only possible differences in the pain-like behavior resulting from CCI, but also differences in 

pain-relief, as well as the underlying neuroinflammatory mechanisms.  

 

 

Further validation of CD40 and TFRC   

The CD40 and TFRC antibodies utilized to discriminate M1 and M2 macrophages 

respectively were chosen based on a rigorous proteomic study carried out on cultured monocytes, 

activated to become M1 or M2 macrophages by interferon-gamma/ lipopolysaccharide (LPS) or 

IL-4 respectively 149. Additionally, it would be useful as a future experiment to first replicate this 

in cell culture, and validate further by both IHC and western blotting, with the addition of 

purified CD40 and TFRC protein as a positive control.  
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Further DRG studies 

The DRG associated with the sciatic nerve were revealed to have a pain neuropathology 

distinct from the site of injury. It would be interesting to explore all of the DRG in the vertebral 

column—namely those not associated with the sciatic nerve, in order to see if inflammation is 

signaled in a ventrorostral manner. In addition, it would be useful to understand the status of 

inflammation along the whole length of the afferent sciatic nerve; and also, to understand the 

temporal nature of neurogenic inflammation (via substance P and CGRP analysis). The DRG are 

housed by a vast glial network of satellite glial cells. An exploration of these satellite cells would 

be useful in a further study. In particular, to find out if and when satellite cells are being 

activated, whether there is crosstalk with immune cells, and whether the satellite cell activity (if 

there is any) precludes that of the surrounding, infiltrating immune cells.  

 

 

Characterizing the CCI model in further detail  

The CCI animals administered with DF-NE—the control treatment—developed pain-like 

behavior that was measurable using the manual von Frey up-down method from approximately 

day 6 following surgery (Fig. 8a). The 50% paw withdrawal threshold lowers progressively and 

reaches a maximum at approximately day 11 following surgery, at which point pain-like 

behavior plateaus at a maximum until the animals are sacrificed on day 18. It would be prudent 

to firstly extend the experiment to investigate exactly how long this maximum level of pain-like 

behavior persists. This would elucidate the extent of the pain-like behavior in more detail on a 

temporal level. Secondly, the investigation would be developed to obtain a snapshot of the 

inflammatory milieu at each day (or each day that behavior is performed). Specifically, the IHC 
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experiments performed on the sciatic nerve and DRG would be repeated on each day. Together, 

this would resolve the pain in terms of being acute, chronic—and further—if there is a point at 

which pain might transition from acute to chronic, informed by the underlying neuropathology.  

 

 

Characterizing the involvement of other immune cells 

As a follow-up to this characterization of the CCI model, it would be interesting to 

characterize the involvement of other infiltrating immune cells, particularly other phagocytes 

such as neutrophils and dendritic cells.  We would seek to explore not only in how their 

abundance changes in the conditions investigated in this thesis, but also in terms of whether they 

are phagocytosing nanomedicine. This tissue analysis at daily time-points would provide a 

resolution of the temporal immune cascade in neuropathic pain, and how it is affected by 

targeted nanomedicine therapy.  

 

 

Investigating additional treatment regimens 

Further, nanomedicine treatment at a varying time-points (engineered with different 

fluorescent markers to differentiate each treatment) would elucidate precisely what effect the 

timing—as well as varying drug content—is having on the immune neuropathology and pain-like 

behavior. 

As revealed by this work, a future therapeutic challenge will be to personalize 

nanomedicine treatment to target not only the site of injury, but the associated DRG. The mode 
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in which this is achieved is unclear. It may be that modulation of the DRG is performed with the 

use of a locally administered topical—or intrathecal hydrogel.    

 

 

Investigating the effect of nanoemulsion on normal immune health  

It will be useful to investigate the effect of nanoemulsion treatment on normal immune 

health. Specifically, asking the question of whether attenuating COX-2 in macrophages could 

compromise the immune system and make it susceptible to infectious disease. In its simplest 

form, this could be accomplished by performing a measure of macrophage number in tissue and 

plasma—comparing nanoemulsion treated animals to untreated animals. Additional measures of 

immune health could also be measured in blood, such as complement levels, immunoglobulin 

levels, T cell counts and white blood cell counts.  

 

 

Utilizing single-cell approaches 

Furthermore, new technologies to analyze individual immune cell receptor profiles are 

being developed, such as an approach that combines flow cytometry with mass spectrometry, 

using metal-conjugated antibodies 150. Termed ‘CyTOF, it is possible to assay approximately 50 

markers at once. This type of single cell technology, in addition to sequencing methodologies 

that provide snapshots of the transcriptome, would be a very powerful approach in characterizing 

the cellular fate of discreet populations of immune cells at the affected area and the associated 

DRG. In addition, there is a potential to use the NIRF labelling of cells in a flow cytometry 
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paradigm, to sort monocytes with and without the dye at the site of injury, followed by RNAseq 

to elucidate the specific cellular transcriptome underlying macrophage polarity.  
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Appendix 1: 

Supplementary data 

Biodistribution of nanoemulsion 

 

The biodistribution of nanoemulsion was detected by measuring the NIRF signal 

accumulated at the right sciatic, left sciatic, right L4 and L5 DRG, left L4 and L5 DRG, liver and 

spleen of CCI rats administered with DF-NE, CXB-NE—and sham rats administered with DF-

NE. Nanoemulsion was injected on day-8 post-surgery and tissue was harvested on day 12 

following surgery as described in chapter 2: materials and methods. Two types of NIR scanner 

were utilized. The LicOR Odyssey imager (Supplementary Fig. 1) was used to measure 

fluorescence in sciatic nerve and DRG tissue, with the rationale being that DRG tissue was small 

and may be better suited to imaging on a flatbed scanner. The fluorescence intensity was 

normalized to the weight of the tissue. The results from data accumulated from the LicOR 

odyssey scanner consist of a small sample size, and therefore are not suitable to infer significant 

findings—however, there is a trend of lower fluorescence in all conditions in the left sciatic 

compared to the right sciatic (supplementary Fig. 1a, b). Both the right and left L4 and L5 DRG 

appear to show similar levels of fluorescence across all conditions (supplementary Fig. 1c, d).  
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Supplementary Figure 1. Biodistribution of nanoemulsion measured using LicOR Odyssey 

NIR scanner. 

The NIRF signal emanating from accumulated nanoemulsion at the right sciatic, left sciatic, 
right L4 and L5 DRG, and left L4 and L5 DRG was measured in a LicOR Odyssey flatbed NIR 
scanner. Significant results cannot be inferred due to a relatively small sample size, however 
there is an observed trend of lower fluorescence intensity/ tissue weight in the left sciatic nerve 
compared to the right sciatic nerve. There does not appear to be any differences in fluorescence 
intensity/ tissue weight among all conditions in the right and left L4 and L5 DRG.  
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The LicOR Pearl NIR scanner was utilized to measure biodistribution of nanoemulsion 

in-vivo as previously described in this thesis. The manufacturers also recommend this instrument 

for the use of ex-vivo organ biodistribution studies. The fluorescence intensity/ area of 

nanoemulsion NIRF signal was measured for the right sciatic, left sciatic, liver and spleen of CCI 

animals administered with DF-NE and CXB-NE and sham animals administered with DF-NE. In 

this study, biodistribution data was generated from day 12 and day 18 tissue. Similar to the 

biodistribution data generated from the LicOR Odyssey NIR scanner, the data from the LiCOR 

Pearl imager showed lower levels of NIRF signal in the left sciatic nerve compared to the right. 

At the right sciatic nerve, the fluorescence intensity/ area trended at higher levels compared to 

the sham animals administered with DF-NE. There was no significant difference in NIRF levels 

between CCI animals treated with DF-NE and those treated with CXB-NE. There was also no 

significant difference observed between day 12 and day 18 groups, however there was a trend of 

higher NIRF levels in day 18 sciatic nerve tissue. In liver tissue, NIRF levels were not 

significantly different between conditions, however there was a trend of lower levels in day 18 

tissue—and significantly lower levels in CCI animals administered with CXB-NE (p=.0200, one-

way ANOVA) and sham animals administered with DF-NE (p=.0428, one-way ANOVA). In the 

spleen tissue, there were no significant differences in NIRF levels between treatment or time 

conditions.  
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Supplementary Figure 2. Biodistribution of nanoemulsion measured using LicOR Pearl NIR 

scanner. 

NIRF levels were measured in right sciatic nerve, left sciatic nerve, liver and spleen tissue of 
CCI animals administered with DF-NE, CCI animals administered with CXB-NE and sham 
animals administered with DF-NE. NIRF levels were lower in the left sciatic nerve compared to 
the right—however there was no significant difference in NIRF signal observed in day 12 tissue 
compared to day 18. In liver tissue, there was no significant difference in NIRF signal between 
treatment groups, however a significantly lower NIRF signal was observed at day 18 compared 
to day 12 tissue in the CCI animals administered with CXB-NE (p = 0.0200, one-way ANOVA 
with Tukey’s multiple comparisons test) and sham animals administered with DF-NE (p = 
0.0428, one-way ANOVA with Tukey’s multiple comparisons test). There was a similar—albeit 
not significant—trend observed in CCI animals administered with DF-NE. In spleen tissue, there 
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was no significant differences in NIRF signal observed between treatment conditions, or time 
points.  

 

 

Macrophage Caspase-1 

 

Caspase-1 is central in the NLR family, pyrin domain-containing 3 (NLRP3) 

inflammasome—a multi-protein complex-- found inside immune cells such as macrophages. The 

NLRP3 inflammasome triggers the activation of caspase-1 151, which promotes the release of the 

IL-1β and Il-18 cytokines—the latter being a central mediator of neuropathic pain 25. 

Additionally, and in the context of this thesis, there is evidence that COX-2 is involved in the 

regulation of the NLRP3 inflammasome, and that celecoxib treatment was able to attenuate 

levels of IL-1β and caspase-1 152. A pilot study was performed investigating the macrophage 

expression of caspase-1 in CCI animals administered with DF-NE and CXB-NE. Following 

sacrifice at day 12, tissue was processed as described in chapter 2. It was observed that 

macrophage expressed caspase-1 is significantly reduced (supplementary Fig. 3) in CCI animals 

treated with CXB-NE (p < 0.0001, t-test).  
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Supplementary Figure 3. Macrophage-expressed caspase-1 is reduced following CXB-NE 

treatment. 

Levels of macrophage caspase-1 are reduced significantly (p < 0.0001, t-test) in CCI animals 
treated with CXB-NE compared to CCI animals treated with DF-NE.   
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Autofluorescence in DRG cells 

 

Throughout the investigations comprising this thesis, there was a fluorescent signal 

observed in the 640 nm excitation channel inside the cell bodies of the DRG. It was hypothesized 

that this could be nanoemulsion droplets, however there were no characteristic black spots 

observed in the DIC channel, that would indicate nanoparticles. Moreover, the intensity of the 

signal was measured between groups, and no significant differences were observed. It was hence 

hypothesized that this was an auto-fluorescent signal emanating from lipofuscin pigment, 

commonly observed in nerve cells 152. In an effort to rule out the possibility of this fluorescence 

arising from nanoparticles, DRG tissue from naïve animals--that had not been treated or had 

surgery performed on them—was analyzed. An auto-fluorescent signal was observed in the 640 

nm channel, confirming that this was not due to nanoparticle NIRF signal (supplementary figure 

4).  

 

Supplementary Figure 4. Autufluoresence observed in DRG cell bodies. 

Shown here is autofluorescence in the DRG of naïve rats that did not receive nanomedicine 
treatment, nor CCI or sham surgery.  640 nm excitation channel.  
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Video 1: M2 macrophages fused into a multinucleated giant cell 

DOI link to video: https://doi.org/10.6084/m9.figshare.8142950.v1 

 

 

Video 2: Nanoemulsion droplets inside macrophages 

DOI link to video: https://doi.org/10.6084/m9.figshare.8142962.v1 
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Appendix 2: 

Associated datasets and detailed statistical outputs 

The datasets generated and/or analyzed during the current study are available in the Figshare 

repository, [https://figshare.com/projects/Nanomedicine-

driven_neuropathic_pain_relief_in_a_rat_model_is_associated_with_macrophage_polarity_and_

mast_cell_activation/63785]. The datasets also contain full, detailed outputs of all statistical tests 

performed. 

 

 



 

102 
 

References 

1.  National Institue of Health. NIH Fact Sheets - Pain Management. U.S Department of 
Health & Human Services. 
https://report.nih.gov/nihfactsheets/viewfactsheet.aspx?csid=57. Published 2018. 
Accessed October 16, 2019. 

2.  Gaskin DJ, Richard P. The Economic Costs of Pain in the United States. J Pain. 
2012;13(8):715-724. doi:http://dx.doi.org/10.1016/j.jpain.2012.03.009 

3.  Han X, Shotwell M, McQueen K, Stabile V, Thomas S, Jackson T. A Systematic Review 
and Meta-Analysis of the Global Burden of Chronic Pain Without Clear Etiology in Low- 
and Middle-Income Countries. Anesth Analg. 2016;123(3):739-748. 
doi:10.1213/ane.0000000000001389 

4.  Price TJ, Gold MS. From Mechanism to Cure: Renewing the Goal to Eliminate the 
Disease of Pain. Pain Med. 2017;19(8):1525-1549. doi:10.1093/pm/pnx108 

5.  GBD 2017 Disease and Injury Incidence and Prevalence Collaborators SL, Abate D, 
Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with 
disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a 
systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, 
England). 2018;392(10159):1789-1858. doi:10.1016/S0140-6736(18)32279-7 

6.  Coull JAM, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in 
neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017-1021. 
doi:10.1038/nature04223 

7.  Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and Molecular Mechanisms of 
Pain. Cell. 2009;139(2):267-284. doi:10.1016/J.CELL.2009.09.028 

8.  Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 
2010;16(11):1248-1257. doi:10.1038/nm.2235 

9.  Reichling DB, Levine JD. Critical role of nociceptor plasticity in chronic pain. Trends 
Neurosci. 2009;32(12):611-618. doi:10.1016/j.tins.2009.07.007 

10.  Woolf CJ, Salter MW. Neuronal plasticity: Increasing the gain in pain. Science (80- ). 
2000;288(5472):1765-1768. doi:10.1126/science.288.5472.1765 

11.  Ji R-R, Xu Z-Z, Gao Y-J. Emerging targets in neuroinflammation-driven chronic pain. Nat 
Rev Drug Discov. 2014;13(7):533-548. doi:10.1038/nrd4334 



 

103 

12.  Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like 
drugs. Nat New Biol. 1971;231:232-235. doi:10.1038/newbio231232a0 

13.  Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR. TIS10, a phorbol ester 
tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin 
synthase/cyclooxygenase homologue. J Biol Chem. 1991;266(20):12866-12872. 
http://www.ncbi.nlm.nih.gov/pubmed/1712772. Accessed March 1, 2019. 

14.  Fu JY, Masferrer JL, Seibert K, Raz A, Needleman P. The induction and suppression of 
prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 
1990;265(28):16737-16740. http://www.ncbi.nlm.nih.gov/pubmed/2120205. Accessed 
March 1, 2019. 

15.  FitzGerald GA, Patrono C. The Coxibs, Selective Inhibitors of Cyclooxygenase-2. Wood 
AJJ, ed. N Engl J Med. 2002;345(6):433-442. doi:10.1056/nejm200108093450607 

16.  Nandakishore R, Yalavarthi P, Kiran Y, Rajapranathi M. Selective Cyclooxygenase 
Inhibitors: Current Status. Curr Drug Discov Technol. 2014;11(2):127-132. 
doi:10.2174/1570163811666140127123717 

17.  Ghanem CI, Pérez MJ, Manautou JE, Mottino AD. Acetaminophen from liver to brain: 
New insights into drug pharmacological action and toxicity. Pharmacol Res. 
2016;109:119-131. doi:10.1016/j.phrs.2016.02.020 

18.  Ghanem CI, Rudraiah S, Bataille AM, Vigo MB, Goedken MJ, Manautou JE. Role of 
nuclear factor-erythroid 2-related factor 2 (Nrf2) in the transcriptional regulation of brain 
ABC transporters during acute acetaminophen (APAP) intoxication in mice. Biochem 
Pharmacol. 2015;94(3):203-211. doi:10.1016/j.bcp.2015.01.013 

19.  Roberts E, Nunes VD, Buckner S, et al. Paracetamol: Not as safe as we thought? A 
systematic literature review of observational studies. Ann Rheum Dis. 2016;75(3):552-
559. doi:10.1136/annrheumdis-2014-206914 

20.  Jüni P, Nartey L, Reichenbach S, Sterchi R, Dieppe PA, Egger PM. Risk of cardiovascular 
events and rofecoxib: Cumulative meta-analysis. Lancet. 2004;364(9450):2021-2029. 
doi:10.1016/S0140-6736(04)17514-4 

21.  Centers for Disease Control and Prevention. Understanding the Epidemic | Drug 
Overdose | CDC Injury Center.; 2018. 
https://www.cdc.gov/drugoverdose/epidemic/index.html. 

22.  Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain 
sensation like those seen in man. Pain. 1988;33(1):87-107. doi:10.1016/0304-
3959(88)90209-6 

23.  Janjic JM, Vasudeva K, Saleem M, et al. Low-dose NSAIDs reduce pain via macrophage 
targeted nanoemulsion delivery to neuroinflammation of the sciatic nerve in rat. J 
Neuroimmunol. 2018;318:72-79. doi:10.1016/j.jneuroim.2018.02.010 



 

104 

24.  Vasudeva K, Andersen K, Zeyzus-Johns B, et al. Imaging neuroinflammation in vivo in a 
neuropathic pain rat model with near-infrared fluorescence and (1)(9)F magnetic 
resonance. PLoS One. 2014;9(2):e90589. doi:10.1371/journal.pone.0090589 

25.  Vasudeva K, Vodovotz Y, Azhar N, Barclay D, Janjic JM, Pollock JA. In vivo and 
systems biology studies implicate IL-18 as a central mediator in chronic pain. J 
Neuroimmunol. 2015;283:43-49. doi:10.1016/j.jneuroim.2015.04.012 

26.  Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 
2010;16(11):1248-1257. doi:10.1038/nm.2235 

27.  Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat 
Rev Immunol. 2011;11(11):723-737. doi:10.1038/nri3073 

28.  Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat 
Rev Drug Discov. 2014;13(7):533-548. doi:10.1038/nrd4334 

29.  Waters H. New $10 million X Prize launched for tricorder-style medical device. Nat Med. 
2011;17(7):754-754. doi:10.1038/nm0711-754a 

30.  Finch G, Wolfgang M, Youssoufian H, et al. Nanomedicines: From Bench to Bedside and 
Beyond. AAPS J. 2016;18(6):1373-1378. doi:10.1208/s12248-016-9961-7 

31.  D’Mello SR, Chen M-L, Lee SL, Cruz CN, Tyner KM, Kapoor M. The evolving 
landscape of drug products containing nanomaterials in the United States. Nat 
Nanotechnol. 2017;12(6):523-529. doi:10.1038/nnano.2017.67 

32.  Prabhakar U, Maeda H, K. Jain R, et al. Challenges and key considerations of the 
enhanced permeability and retention effect for nanomedicine drug delivery in oncology. 
Cancer Res. 2013;73(8):2412-2417. doi:10.1158/0008-5472.CAN-12-4561 

33.  Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug 
Deliv Rev. 2011;63(3):131-135. doi:10.1016/j.addr.2010.03.011 

34.  Barenholz Y. Doxil® - The first FDA-approved nano-drug: Lessons learned. J Control 
Release. 2012;160(2):117-134. doi:10.1016/j.jconrel.2012.03.020 

35.  Leroueil PR, Hong S, Mecke A, Baker JR, Orr BG, Holl MMB. Nanoparticle interaction 
with biological membranes: Does nanotechnology present a janus face? Acc Chem Res. 
2007;40(5):335-342. doi:10.1021/ar600012y 

36.  Janjic JM, Srinivas M, Kadayakkara DK, Ahrens ET. Self-delivering nanoemulsions for 
dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc. 2008;130(9):2832-
2841. doi:10.1021/ja077388j 

37.  Patel SK, Janjic JM. Macrophage targeted theranostics as personalized nanomedicine 
strategies for inflammatory diseases. Theranostics. 2015;5(2):150-172. 
doi:10.7150/thno.9476 



 

105 

38.  Herneisey M, Williams J, Mirtic J, et al. Development and characterization of resveratrol 
nanoemulsions carrying dual-imaging agents. Ther Deliv. 2016;7(12):795-808. 
doi:10.4155/tde-2016-0050 

39.  Wolfram J, Zhu M, Yang Y, et al. Safety of Nanoparticles in Medicine. Curr Drug 
Targets. 2015;16(14):1671-1681. doi:10.2174/1389450115666140804124808 

40.  Mura S, Couvreur P. Advanced Drug Delivery Comentarios. Adv Drug Deliv Rev. 
2012;64(13):1394-1416. doi:10.1016/j.addr.2012.06.006 

41.  Janjic JM, Ahrens ET. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley 
Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):492-501. doi:10.1002/wnan.35 

42.  Patel SK, Patrick MJ, Pollock JA, Janjic JM. Two-color fluorescent (near-infrared and 
visible) triphasic perfluorocarbon nanoemuslions. J Biomed Opt. 2013;18(10):101312. 
doi:10.1117/1.JBO.18.10.101312 

43.  O’Hanlon CE, Amede KG, O’Hear MR, Janjic JM. NIR-labeled perfluoropolyether 
nanoemulsions for drug delivery and imaging. J Fluor Chem. 2012;137:27-33. 
doi:10.1016/j.jfluchem.2012.02.004 

44.  Patel SK, Zhang Y, Pollock JA, Janjic JM. Cyclooxgenase-2 inhibiting perfluoropoly 
(ethylene glycol) ether theranostic nanoemulsions-in vitro study. PLoS One. 
2013;8(2):e55802. doi:10.1371/journal.pone.0055802 

45.  Liu L, Bagia C, Janjic JM. The First Scale-Up Production of Theranostic Nanoemulsions. 
Biores Open Access. 2015;4(1):218-228. doi:10.1089/biores.2014.0030 

46.  Janjic JM. Inflammation Targeted Nanomedicine: A perspective on the promise and 
potential of biomedical technologies for pain diagnosis and management. Pract Pain 
Manag. April 2019:33-35. 
https://www.practicalpainmanagement.com/treatments/inflammation-targeted-
nanomedicine. 

47.  Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical 
applications. Adv Drug Deliv Rev. 2013;65(1):36-48. doi:10.1016/j.addr.2012.09.037 

48.  Crucho CIC, Barros MT. Polymeric nanoparticles: A study on the preparation variables 
and characterization methods. Mater Sci Eng C. 2017;80:771-784. 
doi:10.1016/j.msec.2017.06.004 

49.  Kabanov A V, Vinogradov S V. Nanogels as pharmaceutical carriers: Finite networks of 
infinite capabilities. Angew Chemie - Int Ed. 2009;48(30):5418-5429. 
doi:10.1002/anie.200900441 

50.  Sarim Imam S, Ali A, Gull A, Aqil M, Ahmed S, Zafar A. In vitro and preclinical 
assessment of factorial design based nanoethosomes transgel formulation of an opioid 
analgesic. Artif Cells, Nanomedicine, Biotechnol. 2015;44(8):1793-1802. 



 

106 

doi:10.3109/21691401.2015.1102742 

51.  Borrelli DA, Yankson K, Shukla N, Vilanilam G, Ticer T, Wolfram J. Extracellular 
vesicle therapeutics for liver disease. J Control Release. 2018;273:86-98. 
doi:10.1016/j.jconrel.2018.01.022 

52.  Zhang T, Cui H, Forrest ML. Metal nanoparticles. In: NANOPARTICLES FOR 
BIOTHERAPEUTIC DELIVERY (VOLUME 2). ; 2015. doi:10.4155/fseb2013.14.7 

53.  Corr SA. Metal oxide nanoparticles. In: SPR Nanoscience: Volume 3. Royal Society of 
Chemistry; 2016. doi:10.1039/9781782623717-00031 

54.  Qian Z, Li L, Gao X, et al. Delivering instilled hydrophobic drug to the bladder by a 
cationic nanoparticle and thermo-sensitive hydrogel composite system. Nanoscale. 
2012;4(20):6425. doi:10.1039/c2nr31592k 

55.  Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse Applications of Nanomedicine. 
ACS Nano. 2017;11(3):2313-2381. doi:10.1021/acsnano.6b06040 

56.  Mountain GA, Jelier BJ, Bagia C, Friesen CM, Janjic JM. Design and formulation of 
nanoemulsions using 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene in 
combination with linear perfluoro(polyethylene glycol dimethyl ether). J Fluor Chem. 
2014;162:38-44. doi:10.1016/j.jfluchem.2014.03.007 

57.  Patel SK, Beaino W, Anderson CJ, Janjic JM. Theranostic nanoemulsions for macrophage 
COX-2 inhibition in a murine inflammation model. Clin Immunol. 2015;160(1):59-70. 
doi:10.1016/j.clim.2015.04.019 

58.  Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug 
carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523-580. 
http://www.ncbi.nlm.nih.gov/pubmed/20402623. Accessed March 28, 2019. 

59.  Panahi Y, Farshbaf M, Mohammadhosseini M, et al. Recent advances on liposomal 
nanoparticles: synthesis, characterization and biomedical applications. Artif Cells, 
Nanomedicine Biotechnol. 2017;45(4):788-799. doi:10.1080/21691401.2017.1282496 

60.  Mizushima Y. Lipid microspheres (lipid emulsions) as a drug carrier - An overview. Adv 
Drug Deliv Rev. 1996;20(2-3):113-115. doi:10.1016/0169-409X(95)00114-M 

61.  Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted delivery for highly potent 
drugs. Artif Cells, Nanomedicine Biotechnol. 2017;45(8):1478-1489. 
doi:10.1080/21691401.2017.1290647 

62.  Zhou J, Wu W, Caruntu D, et al. Synthesis of porous magnetic hollow silica nanospheres 
for nanomedicine application. J Phys Chem C. 2007;111(47):17473-17477. 
doi:10.1021/jp074123i 

63.  Contri R V, Frank LA, Kaiser M, Pohlmann AR, Guterres SS. The use of 



 

107 

nanoencapsulation to decrease human skin irritation caused by capsaicinoids. Int J 
Nanomedicine. 2014;9(1):951-962. doi:10.2147/IJN.S56579 

64.  Kolker SJ, Quintans JSS, Scotti MT, et al. Nanoemulsion Thermoreversible Pluronic 
F127-Based Hydrogel Containing Hyptis pectinata (Lamiaceae) Leaf Essential Oil 
Produced a Lasting Anti-hyperalgesic Effect in Chronic Noninflammatory Widespread 
Pain in Mice. Mol Neurobiol. 2017;55(2):1665-1675. doi:10.1007/s12035-017-0438-1 

65.  Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: Progress, current status, 
and prospects. Int J Nanomedicine. 2017;12:4085-4109. doi:10.2147/IJN.S132780 

66.  Bordat A, Boissenot T, Nicolas J, Tsapis N. Thermoresponsive polymer nanocarriers for 
biomedical applications. Adv Drug Deliv Rev. 2019;138:167-192. 
doi:10.1016/j.addr.2018.10.005 

67.  Benjaminsen R V., Sun H, Henriksen JR, Christensen NM, Almdal K, Andresen TL. 
Evaluating nanoparticle sensor design for intracellular pH measurements. ACS Nano. 
2011;5(7):5864-5873. doi:10.1021/nn201643f 

68.  Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving 
nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28-51. 
doi:10.1016/j.addr.2015.09.012 

69.  Kwong B, Gai SA, Elkhader J, Wittrup KD, Irvine DJ. Localized immunotherapy via 
liposome-anchored anti- CD137 + IL-2 prevents lethal toxicity and elicits local and 
systemic antitumor immunity. Cancer Res. 2013;73(5):1547-1558. doi:10.1158/0008-
5472.CAN-12-3343 

70.  Lee K, Conboy M, Park HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and 
donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 
2017;1:889-901. doi:10.1038/s41551-017-0137-2 

71.  Kadayakkara DK, Janjic JM, Pusateri LK, Young WB, Ahrens ET. In vivo observation of 
intracellular oximetry in perfluorocarbon-labeled glioma cells and chemotherapeutic 
response in the CNS using fluorine-19 MRI. Magn Reson Med. 2010;64(5):1252-1259. 
doi:10.1002/mrm.22506 

72.  Janjic JM, Patel SK, Patrick MJ, Pollock JA, DiVito E, Cascio M. Suppressing 
inflammation from inside out with novel NIR visible perfluorocarbon nanotheranostics. 
In: Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical 
Applications V. San Francisco, California: SPIE; 2013:85960L. doi:10.1117/12.2004625 

73.  Feng J, Lepetre-Mouelhi S, Gautier A, et al. A new painkiller nanomedicine to bypass the 
blood-brain barrier and the use of morphine. Sci Adv. 2019;5(2):eaau5148. 
doi:10.1126/sciadv.aau5148 

74.  Stern P, Roberts L. The future of pain research. Science (80- ). 2016;354(6312):564-565. 
doi:10.1126/science.354.6312.564 



 

108 

75.  Berrocoso E, Rey-Brea R, Fernández-Arévalo M, Micó JA, Martín-Banderas L. Single 
oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for 
eleven days. Nanomedicine Nanotechnology, Biol Med. 2017;13(8):2623-2632. 
doi:10.1016/j.nano.2017.07.010 

76.  Liu H, Yuan H, Wu B, et al. Nanoparticle-Encapsulated Curcumin Inhibits Diabetic 
Neuropathic Pain Involving the P2Y12 Receptor in the Dorsal Root Ganglia. Front 
Neurosci. 2018;11:755. doi:10.3389/fnins.2017.00755 

77.  Sorge RE, Totsch SK. Sex Differences in Pain. J Neurosci Res. 2017;95(6):1271-1281. 
doi:10.1002/jnr.23841 

78.  Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 
2016;16(10):626-638. doi:10.1038/nri.2016.90 

79.  Hawkey CJ. COX-1 and COX-2 inhibitors. Best Pract Res Clin Gastroenterol. 
2001;15(5):801-820. doi:10.1053/bega.2001.0236 

80.  Holness CL, Simmons DL. Molecular cloning of CD68, a human macrophage marker 
related to lysosomal glycoproteins. Blood. 1993;81(6):1607-1613. 

81.  Forsythe P, Bienenstock J. The mast cell- nerve functional unit: A key component of 
physiologic and pathophysiologic responses. Allergy Nerv Syst. 2012;98:196-221. 
doi:10.1159/000336523 

82.  Chatterjea D, Martinov T. Mast cells: Versatile gatekeepers of pain. Mol Immunol. 
2015;63(1):38-44. doi:10.1016/j.molimm.2014.03.001 

83.  Wernersson S, Pejler G. Mast cell secretory granules: Armed for battle. Nat Rev Immunol. 
2014;14(7):478-494. doi:10.1038/nri3690 

84.  Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. 
functional differentiation. Front Immunol. 2014;5:514. doi:10.3389/fimmu.2014.00514 

85.  Najafi M, Hashemi Goradel N, Farhood B, et al. Macrophage polarity in cancer: A review. 
J Cell Biochem. 2019;120(3):2756-2765. doi:10.1002/jcb.27646 

86.  Becker L, Liu NC, Averill MM, et al. Unique proteomic signatures distinguish 
macrophages and dendritic cells. PLoS One. 2012;7(3):e33297. 
doi:10.1371/journal.pone.0033297 

87.  Saleem M, Deal B, Nehl E, Janjic JM, Pollock JA. Nanomedicine-driven neuropathic pain 
relief in a rat model is associated with macrophage polarity and mast cell activation. Acta 
Neuropathol Commun. 2019;7(1):108. doi:10.1186/s40478-019-0762-y 

88.  Pepys MB, Gordon S, Helming L, et al. Multinucleated Giant Cells Are Specialized for 
Complement-Mediated Phagocytosis and Large Target Destruction. Cell Rep. 
2015;13(9):1937-1948. doi:10.1016/j.celrep.2015.10.065 



 

109 

89.  Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of 
tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55-63. doi:10.1016/0165-
0270(94)90144-9 

90.  Saleem M, Stevens AM, Deal B, Liu L, Janjic J, Pollock JA. A New Best Practice for 
Validating Tail Vein Injections in Rat with Near-infrared-Labeled Agents. J Vis Exp. 
2019;8(146):e59295. doi:10.3791/59295 

91.  Sebestyén MG, Budker VG, Budker T, et al. Mechanism of plasmid delivery by 
hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules. J Gene Med. 
2006;8(7):852-873. doi:10.1002/jgm.921 

92.  Budker VG, Subbotin VM, Budker T, Sebestyén MG, Zhang G, Wolff JA. Mechanism of 
plasmid delivery by hydrodynamic tain vein injection. II. Morphological studies. J Gene 
Med. 2006;8(7):874-888. doi:10.1002/jgm.920 

93.  Lecocq M, Andrianaivo F, Warnier MT, Wattiaux-De Coninck S, Wattiaux R, Jadot M. 
Uptake by mouse liver and intracellular fate of plasmid DNA after a rapid tail vein 
injection of a small or a large volume. J Gene Med. 2003;5(2):142-156. 
doi:10.1002/jgm.328 

94.  Park S, Park H-M, Sun S-H. Single-dose Intravenous Injection Toxicity of Water-soluble 
Danggui Pharmacopuncture (WDP) in Sprague-Dawley Rats. J pharmacopuncture. 
2018;21(2):104-111. doi:10.3831/KPI.2018.21.013 

95.  Zhang X, Nakajima T, Kim M, et al. Activatable fluorescence detection of epidermal 
growth factor receptor positive mediastinal lymph nodes in murine lung cancer model. 
PLoS One. 2018;13(6):e0198224. doi:10.1371/journal.pone.0198224 

96.  Liu G, Lv H, An Y, Wei X, Yi X, Yi H. Tracking of transplanted human umbilical cord-
derived mesenchymal stem cells labeled with fluorescent probe in a mouse model of acute 
lung injury. Int J Mol Med. 2018;41(5):2527-2534. doi:10.3892/ijmm.2018.3491 

97.  Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for 
biological-image analysis. Nat Methods. 2012;9(7):676-682. doi:10.1038/nmeth.2019 

98.  Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv. 
2005;2(4):297-310. https://www.ncbi.nlm.nih.gov/pubmed/16305433. 

99.  McClements DJ, Rao J. Food-Grade Nanoemulsions: Formulation, Fabrication, 
Properties, Performance, Biological Fate, and Potential Toxicity. Crit Rev Food Sci Nutr. 
2011;51(4):285-330. doi:10.1080/10408398.2011.559558 

100.  Rajpoot P, Pathak K, Bali V. Therapeutic applications of nanoemulsion based drug 
delivery systems: a review of patents in last two decades. Recent Pat Drug Deliv Formul. 
2011;5(2):163-172. https://www.ncbi.nlm.nih.gov/pubmed/21361870. 

101.  Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J. Exploring oral 



 

110 

nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert 
Opin Drug Deliv. 2012;9(5):585-598. doi:10.1517/17425247.2012.668523 

102.  Shakeel F, Shafiq S, Haq N, Alanazi FK, Alsarra IA. Nanoemulsions as potential vehicles 
for transdermal and dermal delivery of hydrophobic compounds: an overview. Expert 
Opin Drug Deliv. 2012;9(8):953-974. doi:10.1517/17425247.2012.696605 

103.  Mitri K, Vauthier C, Huang N, et al. Scale-up of nanoemulsion produced by 
emulsification and solvent diffusion. J Pharm Sci. 2012;101(11):4240-4247. 
doi:10.1002/jps.23291 

104.  Muller RH, Harden D, Keck CM. Development of industrially feasible concentrated 30% 
and 40% nanoemulsions for intravenous drug delivery. Drug Dev Ind Pharm. 
2012;38(4):420-430. doi:10.3109/03639045.2011.608681 

105.  Sacerdote P, Franchi S, Moretti S, et al. Cytokine modulation is necessary for efficacious 
treatment of experimental neuropathic pain. J Neuroimmune Pharmacol. 2013;8(1):202-
211. doi:10.1007/s11481-012-9428-2 

106.  Barabas ME, Mattson EC, Aboualizadeh E, Hirschmugl CJ, Stucky CL. Chemical 
structure and morphology of dorsal root ganglion neurons from naive and inflamed mice. 
J Biol Chem. 2014;289(49):34241-34249. doi:10.1074/jbc.M114.570101 

107.  Collington SJ, Williams TJ, Weller CL. Mechanisms underlying the localisation of mast 
cells in tissues. Trends Immunol. 2011;32(10):478-485. doi:10.1016/j.it.2011.08.002 

108.  Schafers M, Marziniak M, Sorkin LS, Yaksh TL, Sommer C. Cyclooxygenase inhibition 
in nerve-injury- and TNF-induced hyperalgesia in the rat. Exp Neurol. 2004;185(1):160-
168. https://www.ncbi.nlm.nih.gov/pubmed/14697327. 

109.  Wang Y, Zhang X, Guo QL, Zou WY, Huang CS, Yan JQ. Cyclooxygenase inhibitors 
suppress the expression of P2X(3) receptors in the DRG and attenuate hyperalgesia 
following chronic constriction injury in rats. Neurosci Lett. 2010;478(2):77-81. 
doi:10.1016/j.neulet.2010.04.069 

110.  Bailard NS, Ortiz J, Flores RA. Additives to local anesthetics for peripheral nerve blocks: 
Evidence, limitations, and recommendations. Am J Heal Pharm. 2014;71(5):373-385. 
doi:10.2146/ajhp130336 

111.  Opperer M, Gerner P, Memtsoudis SG. Additives to local anesthetics for peripheral nerve 
blocks or local anesthesia: a review of the literature. Pain Manag. 2015;5(2):117-128. 
doi:10.1103/PhysRev.96.1460 

112.  Hashimoto A, Ito H, Harato M, Fujiwara Y, Komatsu T. Complications of peripheral 
nerve block. Japanese J Anesthesiol. 2011;60(1):111-119. doi:10.1053/j.trap.2007.05.004 

113.  Moore RA, Chi CC, Wiffen PJ, Derry S, Rice ASC. Oral nonsteroidal anti-inflammatory 
drugs for neuropathic pain. Cochrane Database Syst Rev. 2015;10:CD010902. 



 

111 

doi:10.1002/14651858.CD010902.pub2 

114.  Kieffer BL, Evans CJ. Opioid receptors: From binding sites to visible molecules in vivo. 
Neuropharmacology. 2009;56 Suppl 1:205-212. doi:10.1016/j.neuropharm.2008.07.033 

115.  Stoeber M, Jullié D, Lobingier BT, et al. A Genetically Encoded Biosensor Reveals 
Location Bias of Opioid Drug Action. Neuron. 2018;98(5):963-976.e5. 
doi:10.1016/j.neuron.2018.04.021 

116.  Lai SM, Sheng J, Gupta P, et al. Organ-Specific Fate, Recruitment, and Refilling 
Dynamics of Tissue-Resident Macrophages during Blood-Stage Malaria. Cell Rep. 
2018;25(11):3099-3109.e3. doi:10.1016/j.celrep.2018.11.059 

117.  Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes 
and their deployment to inflammatory sites. Science (80- ). 2009;325(5940):612-616. 
doi:10.1126/science.1175202 

118.  Konishi H, Kiyama H, Okamoto T, Suzuki A, Namikawa K. Pancreatitis-Associated 
Protein-III Is a Novel Macrophage Chemoattractant Implicated in Nerve Regeneration. J 
Neurosci. 2006;26(28):7460-7467. doi:10.1523/jneurosci.0023-06.2006 

119.  Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal 
regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130(5):605-618. 
doi:10.1007/s00401-015-1482-4 

120.  Jeong SR, Kim J, Hwang DH, et al. Contribution of Macrophages to Enhanced 
Regenerative Capacity of Dorsal Root Ganglia Sensory Neurons by Conditioning Injury. J 
Neurosci. 2013;33(38):15095-15108. doi:10.1523/jneurosci.0278-13.2013 

121.  Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil Function: From 
Mechanisms to Disease. Annu Rev Immunol. 2012;30:459-489. doi:10.1146/annurev-
immunol-020711-074942 

122.  Hitchens TK, Ye Q, Eytan DF, Janjic JM, Ahrens ET, Ho C. 19F MRI detection of acute 
allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn Reson 
Med. 2011;65(4):1145-1154. doi:10.1002/mrm.22702 

123.  Novikov DS, Kiselev VG, Jespersen SN. On modeling. Magn Reson Med. 
2018;79(6):3172-3193. doi:10.1002/mrm.27101 

124.  Shin SH, Park EJ, Min C, et al. Tracking perfluorocarbon nanoemulsion delivery by 
19FMRI for precise high intensity focused ultrasound tumor ablation. Theranostics. 
2017;7(3):562-572. doi:10.7150/thno.16895 

125.  Rosales C. Neutrophil: A cell with many roles in inflammation or several cell types? 
Front Physiol. 2018;9:113. doi:10.3389/fphys.2018.00113 

126.  Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ. Macrophages 



 

112 

in skin injury and repair. Immunobiology. 2011;216(7):753-762. 
doi:10.1016/j.imbio.2011.01.001 

127.  Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. 
Expert Rev Mol Med. 2011;13:e23. doi:10.1017/S1462399411001943 

128.  Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and 
polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176-185. 
doi:10.1002/path.4133 

129.  Qian Y. Mast Cells and Neuroinflammation. Med Sci Monit Basic Res. 2014;20:200-206. 
doi:10.12659/msmbr.893093 

130.  Chen R, Fairley JA, Zhao M-L, et al. The Journal of Immunology. J Immunol. 
2002;150(12):5585-5595. doi:10.4049/jimmunol.169.7.3987 

131.  Rodgers K, Xiong S. Contributions of inflammatory mast cell mediators to alterations in 
macrophage function after malathion administration. Int J Immunopharmacol. 
1997;19(3):149-156. http://www.ncbi.nlm.nih.gov/pubmed/9306154. Accessed May 16, 
2019. 

132.  Aich A, Afrin LB, Gupta K. Mast Cell-Mediated Mechanisms of Nociception. Int J Mol 
Sci. 2015;16(12):29069-29092. doi:10.3390/ijms161226151 

133.  Zhang XC, Kainz V, Burstein R, Levy D. Tumor necrosis factor-α induces sensitization of 
meningeal nociceptors mediated via local COX and p38 MAP kinase actions. Pain. 
2011;152(1):140-149. doi:10.1016/j.pain.2010.10.002 

134.  Zhang X, Burstein R, Levy D. Local action of the proinflammatory cytokines IL-1β and 
IL-6 on intracranial meningeal nociceptors. Cephalalgia. 2012;32(1):66-72. 
doi:10.1177/0333102411430848 

135.  Levy D, Kainz V, Burstein R, Strassman AM. Mast cell degranulation distinctly activates 
trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain 
hypersensitivity. Brain Behav Immun. 2012;26(2):311-317. doi:10.1016/j.bbi.2011.09.016 

136.  Vergnolle N, Wallace JL, Bunnett NW, Hollenberg MD. Protease-activated receptors in 
inflammation, neuronal signaling and pain. Trends Pharmacol Sci. 2001;22(3):146-152. 
doi:10.1016/S0165-6147(00)01634-5 

137.  Cobos EJ, Nickerson CA, Gao F, et al. Mechanistic Differences in Neuropathic Pain 
Modalities Revealed by Correlating Behavior with Global Expression Profiling. Cell Rep. 
2018;22(5):1301-1312. doi:10.1016/j.celrep.2018.01.006 

138.  Hu P, McLachlan EM. Macrophage and lymphocyte invasion of dorsal root ganglia after 
peripheral nerve lesions in the rat. Neuroscience. 2002;112(1):23-38. doi:10.1016/S0306-
4522(02)00065-9 



 

113 

139.  Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. Brain 
Res Rev. 2006;51(2):240-264. doi:10.1016/J.BRAINRESREV.2005.11.004 

140.  Vega-Avelaira D, Géranton SM, Fitzgerald M. Differential Regulation of Immune 
Responses and Macrophage/Neuron Interactions in the Dorsal Root Ganglion in Young 
and Adult Rats following Nerve Injury. Mol Pain. 2009;5(1):1744-8069-5-70. 
doi:10.1186/1744-8069-5-70 

141.  Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: Inflammatory CNS reactions 
in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43-53. 
doi:10.1038/nrn3617 

142.  Sorge RE, LaCroix-Fralish ML, Tuttle AH, et al. Spinal Cord Toll-Like Receptor 4 
Mediates Inflammatory and Neuropathic Hypersensitivity in Male But Not Female Mice. 
J Neurosci. 2011;31(43):15450-15454. doi:10.1523/jneurosci.3859-11.2011 

143.  Mapplebeck JCS, Dalgarno R, Tu YS, et al. Microglial P2X4R-evoked pain 
hypersensitivity is sexually dimorphic in rats. Pain. 2018;159(9):1752-1763. 
doi:10.1097/j.pain.0000000000001265 

144.  Sorge RE, Mapplebeck JCS, Rosen S, et al. Different immune cells mediate mechanical 
pain hypersensitivity in male and female mice. Nat Neurosci. 2015;18(8):1081-1083. 
doi:10.1038/nn.4053 

145.  Rosen SF, Ham B, Drouin S, et al. T-Cell Mediation of Pregnancy Analgesia Affecting 
Chronic Pain in Mice. J Neurosci. 2017;37(41):9819-9827. doi:10.1523/jneurosci.2053-
17.2017 

146.  Nag S, Mokha SS. Testosterone is essential for α2-adrenoceptor-induced antinociception 
in the trigeminal region of the male rat. Neurosci Lett. 2009;467(1):48-52. 
doi:10.1016/j.neulet.2009.10.016 

147.  Aloisi AM, Bachiocco V, Costantino A, et al. Cross-sex hormone administration changes 
pain in transsexual women and men. Pain. 2007;132(SUPPL. 1):S60-7. 
doi:10.1016/j.pain.2007.02.006 

148.  North RY, Li Y, Ray P, et al. Electrophysiological and transcriptomic correlates of 
neuropathic pain in human dorsal root ganglion neurons. Brain. 2019;142(5):1215-1226. 
doi:10.1093/brain/awz063 

149.  Becker L, Liu N-C, Averill MM, Yuan W, Pamir N. Unique Proteomic Signatures 
Distinguish Macrophages and Dendritic Cells. PLoS One. 2012;7(3):e33297. 
doi:10.1371/journal.pone.0033297 

150.  Landhuis E. Single-cell approaches to immune profiling technology-feature. Nature. 
2018;557(7706):595-597. doi:10.1038/d41586-018-05214-w 

151.  Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: A caspase-1-



 

114 

activation platform that regulates immune responses and disease pathogenesis. Nat 
Immunol. 2009;10(3):241-247. doi:10.1038/ni.1703 

152.  Hua KF, Chou JC, Ka SM, et al. Cyclooxygenase-2 regulates NLRP3 inflammasome-
derived IL-1β production. J Cell Physiol. 2015;230(4):863-874. doi:10.1002/jcp.24815 

 


	Nanomedicine-driven neuropathic pain relief in rat model is associated with macrophage polarity and mast cell activation
	Recommended Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	ABBREVIATIONS
	LIST OF FIGURES
	Chapter I. Introduction
	Chronic pain is a disease epidemic
	Treatment of chronic pain
	Advent of pain nanomedicine to personalize treatment and reverse opioid epidemic
	Types of nanomedicines
	Nanomedicine research for the treatment of pain
	The realization of personalized pain nanomedicine
	Macrophage and mast cell mechanisms of neuropathic pain

	Chapter II. Materials and methods
	Ethics approval and consent to participate
	Blinded experiments
	Chronic constriction injury
	Pain-like behavior testing
	In vitro cell culture studies – cellular uptake
	In vitro cell culture studies – cellular viability
	PGE2 ELISA Assay
	Rat Tail-Vein Injection of Nanoemulsion
	Animal Protocol
	Preparation and anesthesia
	Pre-injection imaging
	Method of Tail vein injection
	Post-injection imaging
	Image quantification
	Results

	NIRF Imaging in Live Animals
	Euthanasia
	Tissue Processing
	Immunofluorescence and Nanoemulsion Detection
	Confocal Microscopy and Image Analysis

	Chapter III. Results: Low-dose NSAIDs reduce pain via macrophage targeted nanoemulsion delivery to neuroinflammation of the sciatic nerve in rat
	Contribution statement
	Highlights
	Abstract
	2. Materials and methods
	Please refer to chapter 2 for comprehensive materials and methods.

	3. Results
	3.1. Nanoemulsion development and quality control
	3.2. Live animal pain assessment
	3.3. Histological evaluation of drug loaded nanoemulsion in injured sciatic nerve


	Chapter IV. Results: Nanomedicine-driven neuropathic pain relief in rat model is associated with macrophage polarity and mast cell activation
	Contribution statement
	Results
	Nanomedicine treatment relieves pain-like hypersensitivity for ~6 days
	NIRF signal accumulation at the inflamed sciatic nerve of live animals is lowered after nanomedicine treatment
	Ex vivo tissue analysis of macrophage infiltration at the affected sciatic nerve confirms a reduction in inflammation
	Nanomedicine treatment does not reduce macrophage infiltration at the L4 and L5 DRG associated with the inflamed sciatic nerve
	COX-2 positive macrophages in the ipsilateral sciatic nerve are significantly reduced following nanomedicine treatment
	Extracellular PGE2 at the ipsilateral sciatic nerve is significantly reduced following nanomedicine treatment
	Nanomedicine treatment significantly reduces the number of M1 pro-inflammatory macrophages while increasing the number of M2 anti-inflammatory macrophages in the sciatic nerve
	CD68-positive multinucleated giant cells (MGCs) in the ipsilateral sciatic nerve appear prominently by day 18 following surgery, and at significantly higher counts following nanomedicine treatment
	Number of infiltrating mast cells in the ipsilateral sciatic nerve is significantly reduced following nanomedicine treatment and not in the ipsilateral DRG
	Mast cell degranulation is significantly reduced following nanomedicine treatment

	Supplementary figures

	Chapter V. Discussion and conclusions
	Discussion and conclusion of results presented in chapter III
	Discussion and conclusion of results presented in chapter IV
	Theranostic nanomedicine offers multi-day neuropathic pain relief, effectively diagnoses inflammation in-vivo and sheds light on the underlying mechanisms of immune cell pathology
	Macrophage infiltration is reduced in the inflamed sciatic nerve and not the associated L4 and L5 DRG following nanomedicine treatment
	Nanomedicine treatment significantly reduces the proportion of COX-2 positive macrophages and extracellular PGE2 at day 12 but not day 18
	Nanomedicine treatment drives macrophages to switch polarity to an anti-inflammatory phenotype
	Multinucleated giant cells form from M2 macrophages and are observed at day 18, predominantly in the nanomedicine treatment group
	The shift in macrophage polarity is associated with a reduction in mast cell activation
	The proposed mechanism underlying the return to pain-like behavior at day 18
	Conclusions

	Future directions

	Appendix 1: Supplementary data
	Biodistribution of nanoemulsion
	Macrophage Caspase-1
	Autofluorescence in DRG cells
	Video 1: M2 macrophages fused into a multinucleated giant cell
	Video 2: Nanoemulsion droplets inside macrophages

	Appendix 2: Associated datasets and detailed statistical outputs
	References

