21 research outputs found

    Stereotactic Radiotherapy for Brain Metastases: Imaging Tools and Dosimetric Predictive Factors for Radionecrosis

    Get PDF
    Radionecrosis (RN) is the most important side effect after stereotactic radiotherapy (SRT) for brain metastases, with a reported incidence ranging from 3% to 24%. To date, there are no unanimously accepted criteria for iconographic diagnosis of RN, as well as no definitive dose-constraints correlated with the onset of this late effect. We reviewed the current literature and gave an overview report on imaging options for the diagnosis of RN and on dosimetric parameters correlated with the onset of RN. We performed a PubMed literature search according to the preferred reporting items and meta-analysis (PRISMA) guidelines, and identified articles published within the last ten years, up to 31 December 2019. When analyzing data on diagnostic tools, perfusion magnetic resonance imaging (MRI) seems to be very useful allowing evaluation of the blood flow in the lesion using the relative cerebral blood volume (rCBV) and blood vessel integrity using relative peak weight (rPH). It is necessary to combine morphological with functional imaging in order to match information about lesion morphology, metabolism and blood-flow. Eventually, serial imaging follow-up is needed. Regarding dosimetric parameters, in radiosurgery (SRS) V12 < 8 cm3 and V10 < 10.5 cm3 of normal brain are the most reliable prognostic factors, whereas in hypo-fractionated stereotactic radiotherapy (HSRT) V18 and V21 are considered the main predictive independent risk factors of RN

    Treg/Tcon Immunotherapy and High Dose Marrow Irradiation Ensure Full Control of Leukemia Relapse in Haploidentical Transplantation

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (HSCT) is the most powerful therapy for patients with high risk of relapse. In spite of that, no matter the donor source or conditioning regimen used, leukemia relapse is still the leading cause of HSCT failure. In HLA-haploidentical HSCT, we recently applied a clinical protocol consisting of total body irradiation (TBI)-based conditioning regimen and a peripheral blood CD34+ cell graft combined with the adoptive transfer of naturally occurring regulatory T cells (Tregs) and conventional T cells (Tcons). No post-transplant pharmacologic GvHD prophylaxis was given. Such protocol was associated with low GvHD and relapse rate (Martelli et al., Blood 2014). To further reduce leukemia relapse in Treg/Tcon-based haploidentical HSCT (Treg/Tcon haplo-HSCT) we used high dose hyper-fractionated TBI (HF-TBI) in the conditioning regimen. We also extended Treg/Tcon haplo-HSCT to patients that are unfit (because of previous comorbidities) and/or too old to withstand high intensity regimens. In these patients the extra-hematologic toxicity of irradiation was reduced with the use of targeted total marrow and lymph node irradiation (TMLI). 40 patients with high risk acute leukemia (36 AML, 4 ALL) received Treg/Tcon haplo-HSCT. All but 3 patients were transplanted in complete remission. 12 younger patients (median age: 28, range: 20-43) received HF-TBI, while 28 older or unfit patients (59, 40-70) received TMLI in the conditioning regimen. HF-TBI (14.4 Gy) was administered in 12 fractions, 3 times a day for 4 days. TMLI was administered by means of Helical Tomotherapy HI-ART (9 fractions, 2 times a day for 4.5 days). Irradiation was followed by chemotherapy with Thiotepa, Fludarabine, and Cyclophosphamide. 2 × 106/kg freshly isolated CD4+CD25+FOXP3+ Tregs were transferred 4 days before the infusion of 1 × 106/kg Tcons and a mega-dose of CD34+ hematopoietic stem cells. No post-transplant pharmacologic GvHD prophylaxis was given. 38/40 patients engrafted. 12 (31%) developed aGvHD grade ³2 (10 are alive and off-therapy). 6 (16%) died because of transplant related complications (2 because of aGvHD, 2 infections, 1 veno-occlusive disease, 1 intracranial hemorrhage). Strikingly, despite the high risk diseases, no patient relapsed after a median follow up of 13 months (range 1-36, Fig. A). Further, only 1 patient developed cGvHD. Thus, cGvHD/Leukemia-free survival was 82% (Fig. B). Treg adoptive transfer allows for the safe infusion of an otherwise lethal dose of donor alloreactive Tcons in the absence of any other form of immune suppression. Our results demonstrate that the potent graft versus leukemia effect of Treg/Tcon adoptive transfer was boosted by high dose marrow irradiation. Thus, this study proves that the right combination of haploidentical Treg/Tcon immunotherapy plus a powerful conditioning regimen can fully eradicate leukemia

    Tomotherapy-based moderate hypofractionation for localized prostate cancer: a mono-institutional analysis

    Get PDF
    Background: To date, few studies have been published on image-guided helical tomotherapy (HT) in a moderate hypofractionation of localized PCa. We report outcome and toxicity of localized PCa patients treated with HT-based moderate hypofractionated radiotherapy. Materials and methods: 76 patients were retrospectively analyzed. A total dose of 60 Gy (20 x 3 Gy) or 67.5 Gy (25 x 2.7 Gy) was prescribed. The Chi2 test was used to analyze associations between toxicity and dosimetric and clinical parameters. The Cox proportional hazard regression model was used for multivariate analysis. Kaplan-Meier method was used for survival analysis. Results: median follow-up was 42.26 months [interquartile (IQR), 23–76). At 4-year, overall survival (OS) and metastasis-free survival (MFS) were 91% and 89%, respectively. At multivariate analysis, smoking habitude was associated with MFS [hazard ratio (HR) 7.32, 95% CI: 1.57–34.16, p = 0.011]. Acute and late grade ≥ 2 gastro-intestinal (GI) toxicity was observed in 6.5% and 2.6% of patients, respectively. Acute and late grade ≥ 2 genito-urinary (GU) toxicity were 31.5% and 3.9%. Four-year late GI and GU grade ≥ 2 toxicity were 3% and 7%, respectively. Acute GI toxicity was associated with statins medication (p = 0.04) and androgen deprivation therapy (p = 0.013). Acute GU toxicity was associated with the use of anticoagulants (p = 0.029) and antiaggregants (p = 0.013). Conclusions: HT-based moderate hypofractionation shows very low rates of toxicity. Smoking habitude is associated with the risk of developing metastases after radical treatment for localized PCa

    Effect of internal port on dose distribution in post-mastectomy radiotherapy for breast cancer patients after expander breast reconstruction

    Get PDF
    Background: In patients with expander-based reconstruction a few dosimetric analyses detected radiation therapy dose perturbation due to the internal port of an expander, potentially leading to toxicity or loss of local control. This study aimed at adding data on this field. Materials and methods: A dosimetric analysis was conducted in 30 chest wall treatment planning without and with correction for port artifact. In plans with artifact correction density was overwritten as 1 g/cm3. Medium, minimum and maximum chest wall doses were compared in the two plans. Both plans, with and without correction, were compared on an anthropomorphic phantom with a tissue expander on the chest covered by a bolus simulating the skin. Ex vivo dosimetry was carried out on the phantom and in vivo dosimetry in three patients by using film strips during one treatment fraction. Estimated doses and measured film doses were compared. Results: No significant differences emerged in the minimum, medium and maximum doses in the two plans, without and with correction for port artifacts. Ex vivo and in vivo analyses showed a good correspondence between detected and calculated doses without and with correction. Conclusions: The port did not significantly affect dose distribution in patients who will receive post-mastectomy radiation therapy (PMRT)

    Radiotherapy at oligoprogression for metastatic castration-resistant prostate cancer patients: a multi-institutional analysis

    Get PDF
    Purpose To retrospectively estimate the impact of radiotherapy as a progression-directed therapy (PDT) in oligoprogressive metastatic castration-resistant prostate cancer (mCRPC) patients under androgen receptor-target therapy (ARTT). Materials and methods mCRPC patients are treated with PDT. End-points were time to next-line systemic treatment (NEST), radiological progression-free survival (r-PFS) and overall survival (OS). Toxicity was registered according to Common Terminology Criteria for Adverse Events v4.0. Survival analysis was performed using the Kaplan-Meier method; univariate and multivariate analyses were performed. Results Fifty-seven patients were analyzed. The median follow-up after PDT was 25.2 months (interquartile, 17.1-44.5). One-year NEST-free survival, r-PFS and OS were 49.8%, 50.4% and 82.1%, respectively. At multivariate analysis, polymetastatic condition at diagnosis of metastatic hormone-sensitive prostate cancer (mHSPC) (HR 2.82, p = 0.004) and PSA doubling time at diagnosis of mCRPC (HR 2.76, p = 0.006) were associated with NEST-free survival. The same variables were associated with r-PFS (HR 2.32, p = 0.021; HR 2.24, p = 0.021). One patient developed late grade >= 2 toxicity. Conclusion Our study shows that radiotherapy in oligoprogressive mCRPC is safe, is effective and seems to prolong the efficacy of ARTT in patients who otherwise would have gone systemic treatment switch, positively affecting disease progression. Prospective trials are needed

    Feasibility of a Novel Sparse Orthogonal Collimator–Based Preclinical Total Marrow Irradiation for Enhanced Dosimetric Conformality

    Get PDF
    Total marrow irradiation (TMI) has significantly improved radiation conditioning for hematopoietic cell transplantation in hematologic diseases by reducing conditioning-induced toxicities and improving survival outcomes in relapsed/refractory patients. Recently, preclinical three-dimensional image–guided TMI has been developed to enhance mechanistic understanding of the role of TMI and to support the development of experimental therapeutics. However, a dosimetric comparison between preclinical and clinical TMI reveals that the preclinical TMI treatment lacks the ability to reduce the dose to some of the vital organs that are very close to the skeletal system and thus limits the ability to evaluate radiobiological relevance. To overcome this limit, we introduce a novel Sparse Orthogonal Collimator (SOC)–based TMI and evaluate its ability to enhance dosimetric conformality. The SOC-TMI–based dose modulation technique significantly improves TMI treatment planning by reducing radiation exposures to critical organs that are close to the skeletal system that leads to reducing the gap between clinical and preclinical TMI

    Technical recommendations for implementation of Volumetric Modulated Arc Therapy and Helical Tomotherapy Total Body Irradiation

    Get PDF
    As a component of myeloablative conditioning before allogeneic hematopoietic stem cell transplantation (HSCT), Total Body Irradiation (TBI) is employed in radiotherapy centers all over the world. In recent and coming years, many centers are changing their technical setup from a conventional TBI technique to multi-isocenter conformal arc therapy techniques such as Volumetric Modulated Arc Therapy (VMAT) or Helical Tomotherapy (HT). These techniques allow better homogeneity and control of the target prescription dose, and provide more freedom for individualized organ-at-risk sparing. The technical design of multi-isocenter/multi-plan conformal TBI is complex and should be developed carefully. A group of early adopters with conformal TBI experience using different treatment machines and treatment planning systems came together to develop technical recommendations and share experiences, in order to assist departments wishing to implement conformal TBI, and to provide ideas for standardization of practices

    Prognostic Genomic Tissue-Based Biomarkers in the Treatment of Localized Prostate Cancer

    No full text
    In localized prostate cancer clinicopathologic variables have been used to develop prognostic nomograms quantifying the probability of locally advanced disease, of pelvic lymph node and distant metastasis at diagnosis or the probability of recurrence after radical treatment of the primary tumor. These tools although essential in daily clinical practice for the management of such a heterogeneous disease, which can be cured with a wide spectrum of treatment strategies (i.e., active surveillance, RP and radiation therapy), do not allow the precise distinction of an indolent instead of an aggressive disease. In recent years, several prognostic biomarkers have been tested, combined with the currently available clinicopathologic prognostic tools, in order to improve the decision-making process. In the following article, we reviewed the literature of the last 10 years and gave an overview report on commercially available tissue-based biomarkers and more specifically on mRNA-based gene expression classifiers. To date, these genomic tests have been widely investigated, demonstrating rigorous quality criteria including reproducibility, linearity, analytical accuracy, precision, and a positive impact in the clinical decision-making process. Albeit data published in literature, the systematic use of these tests in prostate cancer is currently not recommended due to insufficient evidence

    Stereotactic Radiotherapy for Brain Metastases: Imaging Tools and Dosimetric Predictive Factors for Radionecrosis

    No full text
    Radionecrosis (RN) is the most important side effect after stereotactic radiotherapy (SRT) for brain metastases, with a reported incidence ranging from 3% to 24%. To date, there are no unanimously accepted criteria for iconographic diagnosis of RN, as well as no definitive dose-constraints correlated with the onset of this late effect. We reviewed the current literature and gave an overview report on imaging options for the diagnosis of RN and on dosimetric parameters correlated with the onset of RN. We performed a PubMed literature search according to the preferred reporting items and meta-analysis (PRISMA) guidelines, and identified articles published within the last ten years, up to 31 December 2019. When analyzing data on diagnostic tools, perfusion magnetic resonance imaging (MRI) seems to be very useful allowing evaluation of the blood flow in the lesion using the relative cerebral blood volume (rCBV) and blood vessel integrity using relative peak weight (rPH). It is necessary to combine morphological with functional imaging in order to match information about lesion morphology, metabolism and blood-flow. Eventually, serial imaging follow-up is needed. Regarding dosimetric parameters, in radiosurgery (SRS) V12 &lt; 8 cm3 and V10 &lt; 10.5 cm3 of normal brain are the most reliable prognostic factors, whereas in hypo-fractionated stereotactic radiotherapy (HSRT) V18 and V21 are considered the main predictive independent risk factors of RN

    Is volumetric modulated arc therapy with constant dose rate a valid option in radiation therapy for head and neck cancer patients?

    No full text
    BackgroundIntensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer.Methods and materialsStep and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle3 TPS (v 9.8) using 6[[ce:hsp sp="0.25"/]]MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66[[ce:hsp sp="0.25"/]]Gy, 60[[ce:hsp sp="0.25"/]]Gy and 54[[ce:hsp sp="0.25"/]]Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs (Dmean, D2%, D50%, D95%, D98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times.ResultsCompared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D98% and D95%. It significantly spared parotid and submandibular glands and was associated with a lower Dmean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better Dmean, to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the Dmean to the larynx was also worse. Compared with SS-IMRT and VDR-VMAT, CDR-VMAT was associated with higher average monitor unit values and significantly shorter average delivery times.ConclusionsCDR-VMAT appeared to be a valid option in Radiation Therapy Centers that lack a dedicated linear accelerator for volumetric arc therapy with variable dose-rates and gantry velocities, and are unwilling or unable to sanction major expenditure at present but want to adopt volumetric techniques
    corecore