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Total marrow irradiation (TMI) has significantly improved radiation conditioning for
hematopoietic cell transplantation in hematologic diseases by reducing conditioning-
induced toxicities and improving survival outcomes in relapsed/refractory patients.
Recently, preclinical three-dimensional image–guided TMI has been developed to
enhance mechanistic understanding of the role of TMI and to support the development
of experimental therapeutics. However, a dosimetric comparison between preclinical and
clinical TMI reveals that the preclinical TMI treatment lacks the ability to reduce the dose to
some of the vital organs that are very close to the skeletal system and thus limits the ability
to evaluate radiobiological relevance. To overcome this limit, we introduce a novel Sparse
Orthogonal Collimator (SOC)–based TMI and evaluate its ability to enhance dosimetric
conformality. The SOC-TMI–based dose modulation technique significantly improves TMI
treatment planning by reducing radiation exposures to critical organs that are close to the
skeletal system that leads to reducing the gap between clinical and preclinical TMI.

Keywords: TBI, TMI, SOC, HCT, RAO, CBCT (cone beam computed tomography)
INTRODUCTION

Radiotherapy is an important component of bone marrow transplantation condition regimens for
hematological diseases (1). For more than 50 years, total body irradiation (TBI) has been a standard
of care as a conditioning regimen for the host immune suppression and for the reduction of disease
burden to allow donor engraftment (2, 3). Several randomized trials have demonstrated superior
outcomes using TBI compared to non-TBI–containing regimens (4, 5). Although TBI-based dose
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escalation reduces relapse in high-risk patients with leukemia, no
benefit in overall survival was observed due to organ toxicity (6).
This further emphasized the unmet clinical need for
advanced technology.

Hui et al., for the first in the field, have developed a more
targeted conformal form of TBI delivery [total marrow
irradiation (TMI)] (7). TMI approach is to spare the organs at
risk (OARs) and the remaining healthy tissues in the body,
maintaining the coverage of target hematopoietic or lymphoid
tissues with respect to the standard TBI. The feasibility and early
clinical data of TMI were reported both by helical tomotherapy
(HT)–based approaches (7–10), conventional Linac using
intensity-modulated radiation therapy (IMRT) (11, 12), and
volumetric modulated arc therapy (VMAT) using rapid arc
approach (Varian Medical Systems, Palo Alto, CA) (13, 14).

Although new clinical technology supported clinical
advancement, the relapse rate remains high. For a mechanistic
understanding of the role of TMI on engraftment, antileukemic
effect, etc., and to envelope future experimental therapeutics, a
preclinical mouse model is essential. A film-based two-
dimensional (2D) image guidance method identifying organ
position and copper compensator was used to develop the
first-generation preclinical TMI (15). However, it lacks three-
dimensional (3D) imaging to detect targets and organs,
generating organ dosimetry such as dose-volume histograms
(DVHs), the inclusion of tissue heterogeneity, and the ability
to vary dose exposures. Therefore, we developed the second-
generation CT image–guided 3D-TMI (16), which, however,
showed limited ability to reduce dose to organs that are close
to the skeletal system (e.g., lungs and kidney). In this study, we
introduce a new concept Sparse Orthogonal Collimator (SOC)–
based TMI (SOC-TMI). Comparative analysis of SOC-TMI
planning and dosimetry from recently reported 3D-TMI and
several clinical TMI plans shows substantial improvements in
dosimetric control while accompanying SOC in preclinical
TMI platforms.
MATERIAL AND METHODS

Clinical TMI Studies
We reviewed published articles, in which patients with leukemia
were treated with TMI techniques using either HT
(Tomotherapy, Madison, WI) or Linac-based volumetric arc
therapy. From the available literature, we selected four papers
that were conducted to evaluate whether TMI obtained optimal
dosimetric coverage of the PTV and sparing of various organs
such as the heart, gut, lungs, kidneys, and liver (8, 9, 13, 14).
Furthermore, data from two unpublished clinical TMI studies
from the Radiation Oncology Department of the Perugia
University and City of Hope Radiation Oncology Center were
analyzed. Because target prescription dose varies across centers,
we calculated the percentage dose exposure to organs with
respect to the prescribed dose. This relative dose exposure is
then compared with the relative dose exposure obtained from
3D-TMI and SOC-TMI preclinical models.
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TMI Preclinical Models
The preclinical TMI treatments were performed using the x-ray
irradiator (Precision X-Ray, North Branford, CT) in compliance
with the current guidelines (17). It has a maximum tube potential
of 225 kV. Photons were filtered through a beryllium window
with an additional 2.0-mm aluminum filter for imaging and 0.32-
mm copper filter for treatment (18). We have used five-mice
cases for both TMI preclinical models. The animal was placed in
a custom-designed animal holder under isoflurane anesthesia to
ensure its immobilization and reproducible positioning. Cone
Beam Computed Tomography (CBCT) scans of reference
animals in the prone position were acquired using 40-kVp and
3-mA beam settings with a 0.2-mm voxel size. Using velocity,
soft tissue organs were identified and contoured for use in
treatment planning. Moreover, we contoured the entire body
minus the skeletal bones and the spleen to calculate the integral
dose to the body. After contouring, images were exported to the
planning systems to generate TMI plans.

3D-TMI Preclinical
The 3D-TMI preclinical model was developed as a second-
generation TMI preclinical model (16). Mice 3D-TMI preclinical
radiation treatment plans are generated by following steps: The
whole-body mouse CBCT scan was performed. Next, whole-body
CT scans separated into seven regions: head, cervical spine, dorsal
spine and spleen, lumber spine, femurs, tibias, and shoulders.
Visualization of a projected radiation beam on a 3D CT image
allowed for adjustment of beam size and isocenter to cover the
target and reduce exposure to adjacent critical organs. Each region
has its beam size, isocenter location, and normalization point, and
parallel-opposed beams with varied beam size were used to create
a homogenized dose. Field matching is achieved by imposing
different beam sizes [40 mm× 40mm (standard), 20mm× 20mm
(standard), 10 mm × 10 mm (standard), 10 mm × 10 mm
(cylinder), and 5 mm × 5 mm (cylinder)], both parallelism and
coincidence between the side planes of adjacent fields
(Figures 1A–C). However, the spleen, femurs, and tibias beams
are matched with dorsal and lumber beams. Matched beams in
those regions have some hot spots because of the intersection
between lateral parallelized beams and perpendicular beams
(Figures 1D–F). Mice TMI is a 3D treatment planning with
kilovoltage (kV) radiation beams on whole-body CBCT image,
and dose distribution and absorbed dose are significantly affected
by HU CBCT pixel values, as bone areas absorbed more than
250% of the prescribed dose due to kV-radiation beams (19, 20)
(Figures 3A, B). The CT-guided Monte Carlo dose calculations
accounted for tissue heterogeneity, enhancing accuracy of organ
dose evaluation. Detail validation ofMonte Carlo–based treatment
planning system (TPS) including calculation of dose to medium
was previously published (17, 18).

GAFChromic EBT3 film- and dosimeter-based dosimetry was
used for the dosimetric validation. Briefly, the film was calibrated
for treatment settings at the isocenter up to 5 Gy. After
calibration, the film was placed under the mouse, and a tissue
prescription dose of 2 Gy was delivered. Afterward, different
regions of interest were outlined in the film identifying the exit
July 2022 | Volume 12 | Article 941814
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dose through the spine, lungs, and gut to accommodate density
variation in the path of the x-ray. The mean dose measurement
was compared with the TPS at the film location to establish an
agreement. We used 2 Gy for film validation so that the dose
response was in the linear region of the EBT3 film. The overall
time of 3D-TMI preclinical planning is approximately 75 min: 15
min for beam placement; 45 min for planning, optimization, and
dose calculation; and 25 min for the estimated delivery time.

SOC-TMI Preclinical
Mouse position, immobilization, and CBCT imaging are the
same as in the 3D-TMI preclinical model. The SOC system is
designed and fabricated with four orthogonal, double-focused
tungsten leaf pairs, which is programmed and controlled by the
Rectangular Aperture Optimization (RAO) algorithm (21, 22),
which solves an inverse optimization problem for IMRT
planning. The SOC can be installed on the small animal
irradiator (Precision X-Ray, North Branford, CT) with a 3D
printed adapter. The plan is uploaded to the SOC control
module, which drives tungsten leaf pairs to form rectangular
apertures and delivers the dose to mouse bones and spleen while
sparing adjacent organs at risk. The SOC plans are utilizing seven
equally distributed coplanar fields. In each coplanar field, there
are several rectangular components made by tungsten
collimators to deliver the dose. Figure 2A shows the four
orthogonal, double-focused tungsten leaf pairs closed before
planning optimization. Figure 2B shows how tungsten
collimators move to form rectangular components at the
coronal angle, and color yellow means the area that beams can
go through to the PTV. Overall, each IMRT SOC-TMI
preclinical plan uses 61 to 93 rectangles per field to intensity
modulate the x-ray fluence. The number of rectangles depends
Frontiers in Oncology | www.frontiersin.org 3
on the size and complexity of the target as a result of RAO
inverse optimization. Figures 2C, D show SOC-TMI and 3D-
TMI schematic beam arrangement according to the X-RAD
SmART small animal image-guided irradiation system,
respectively. SOC-TMI preclinical model uses convolution/
superposition code with a 225-kV x-ray poly-energetic kernel
in a distributed multiple GPU framework, as described (21–23)
for the beamlet dose calculation; its accuracy in profile dose is
below 2% on average from Monte Carlo simulation, but it is
faster and more flexible to meet performance requirements for
most users. A fast-iterative shrinkage-thresholding algorithm is
used to optimize the treatment plan. The beam commissioning
data were acquired on the small animal irradiator (Precision X-
Ray, North Branford, CT) (21). The beamlet resolution at the
isocenter was 1 mm × 1 mm. The dose array resolution was 0.25
mm × 0.25 mm × 0.25 mm. The source-to-isocenter distance
(SID) was 30.54 cm. For SOC-TMI plans, the field size is
extended to 120 mm × 120 mm. The dose calculation and
optimization were performed on a Xeon 40‐core CPU server
operating at 3.10-GHz clock with MATLAB. The overall time of
SOC planning is approximately 45 min: 25 min for planning,
optimization, and dose calculation and 20 min for the estimated
delivery time.
RESULTS

For each of the five mice, median dose percent, average, and
standard deviation for organs at risk in both 3D-TMI preclinical
model and SOC-TMI preclinical model are listed in Table 1. The
median dose of TMI clinical and preclinical studies with
treatment protocol, treatment technique, and prescription dose
B C

D

E

F

A

FIGURE 1 | Common beam arrangements of 3D-TMI treatment. Beam arrangement for parallel opposed beams in (A) sagittal view. (B, C) Coronal views
demonstrating different body levels. (D–F) Axial view in the thoracic, abdominal, and pelvic level showing beams overlapping.
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and a few fractionation schemes with number of enrolled
patients are listed in Table 2. A total of eight studies (six
clinical TMI studies, average of five mice 3D-preclinical TMI
plans, and average of five mice SOC-preclinical plans) were
Frontiers in Oncology | www.frontiersin.org 4
enrolled in this dosimetric analysis, aiming to compare the
clinical and preclinical models and to highlight the advantages
of the SOC-preclinical model. For the preclinical models, the bar
chart of median dose with the standard variation for organs at
Le� Kidney

Bowel

Le� Kidney

Bowel

Right Kidney

B

C D

A

Right Kidney

FIGURE 2 | (A) The four orthogonal, double-focused tungsten leaf pairs before the optimization. (B) The four orthogonal, double-focused tungsten leaf pairs after
applying the rectangular components to cover the target volume; the yellow color represents the area that beams can go through to the PTV. Identical axial CBCT
image at the abdomen level that is showing the kidneys and bowel for both (C) 3D-TMI preclinical model beam arrangements. (D) SOC-TMI schematic beams
arrangement according to the X-RAD SmART small animal image-guided irradiation system.
B C D

E

A

FIGURE 3 | The dose distribution of both (A) 3D-TMI preclinical model and (B) SOC-TMI preclinical model. (C, D) Identical axial CBCT image obtained at the level
of the lungs of mouse shows conformal dose distribution for spine, ribs, and sternum for both SOC-preclinical and 3D-preclinical model, respectively. (E) Bar chart
shown for critical organs—GI, heart, kidneys, lungs, and liver. Three bars in each group represent the mean dose for average of six clinical TMI studies, 3D-TMI
preclinical, and SOC-TMI preclinical.
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risk for the average of five mice in both 3D-TMI and SOC-TMI is
presented Figure 3E. The median dose difference is represented
as a percentage of the prescription dose. OARs are the heart,
kidneys, liver, lungs, and gastrointestinal (GI). For the six clinical
TMI studies, the average median doses of the OARs were
approximately 30%–65% of the prescribed PTV dose.
Otherwise, the 3D-TMI preclinical model reduced heart, liver,
and GI doses compared to clinical studies. Whereas the lungs
and kidneys doses were very high due to their proximity to the
spine, the median dose was about 52.6% and 81.6% of the
prescribed dose, respectively. SOC-TMI preclinical model has
more organ dose sparing capability, especially the kidneys and
lungs. Dose to the lungs was reduced by 95.8% ± 0.8%, to the
kidneys by 98.4 ± 0.5%, and to the liver by 97.7± 0.7% of the
prescription dose. GI and heart doses have been reduced by 82.8
± 9.8% and 87.4 ± 11.3% of the prescription dose, respectively.

SOC-TMI average integral dose was 53.1% of the prescribed
dose, whereas 3D-TMI dose was 70.7% of the prescribed dose.
SOC-TMI has shown a significant median dose reduction to the
lungs by 48.4% (p = 0.014) and to the kidneys by 80.6% (p =
0.013), but non-significant reductions were observed in the liver
and GI by 15.4% and 14.5%, respectively. The heart received a
slightly greater median dose by 2.6%.

The dose coverage to the whole-body is shown in a color
wash presentation in Figures 3A, B for 3D-preclinical TMI
and SOC-preclinical TMI, respectively. The color map is the
dose level between 0 Gy as minimum to 52 Gy as the
maximum dose range in preclinical TMI models. We used a
different color scale between the two preclinical models to
discriminate and show the dose distributions differences.
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Highly conformal dose coverage of the bone marrow sites
was achieved in SOC-TMI preclinical model, as shown in
Figure 3B. The dose distribution to the target and OARs
(lungs and liver) in the transverse image at the level of the
mediastinum in both SOC-preclinical and 3D-preclinical
models is shown in Figures 3C, D. Moreover, SOC-TMI
compared with 3D-TMI has further reduced the body
integral dose by an average of 17.6% ± 6.2%.

Figure 4 shows dose volume histograms for PTV and various
organs from six clinical TMI studies, 3D-preclinical TMI, and
SOC-preclinical TMI treatments (Figures 4A–E). DVH
indicated the successful sparing of the major normal organs of
the SOC-preclinical TMI. The SOC-preclinical TMI (dark red
dashed lines) showed a significant reduction in dose exposures
for various OARs compared to 3D-preclinical TMI and clinical
studies’ dose levels. PTV is covered by 85%–95% of the
prescribed dose in all six different clinical studies. Preclinical
PTV covered by 85% of the prescribed dose in both 3D-TMI and
SOC-TMI models.
DISCUSSION

The TMI treatment technique is increasingly becoming
an alternative to TBI for conditioning regimens for
hematopoietic cell transplantation because it reduces radiation
exposure to all organs. Dose-escalated TMI has been successfully
implemented with improved survival (24). Subsequently, TMI
preclinical models (2D and 3D) were developed to enhance our
understanding of the role of TMI in hematological malignancies
TABLE 1 | The median dose with standard deviation of the organs at risks for the 3D-TMI preclinical model versus the SOC-TMI preclinical model.

OARs’ median dose percent in both 3D-TMI and SOC-TMI

OARs Bowel % Heart % Kidneys % Lungs % Liver %

Plan SOC 3D SOC 3D SOC 3D SOC 3D SOC 3D

m1 28.3 37.5 6.5 6.511.1 0.9 91.3 4.8 58.3 2.5 22.5

m2 27.4 38.0 5 9.3 1.4 70.0 4.6 43.8 1.6 13.8

m3 8.6 24.2 20.3 11.3 2.3 89.0 4.7 48.3 1.4 9.8

m4 11.9 22.5 18.7 9.2 1.6 76.3 4.1 53.8 3.1 18.8

m5 9.7 36.3 12.4 9.1 1.6 81.3 2.9 58.8 2.8 23.8

Average 17.2 31.7 12.6 10 1.6 81.6 4.2 52.6 2.3 17.7

SD 9.8 7.7 6.9 1.1 0.5 8.8 0.8 6.5 0.7 5.9
July 202
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TABLE 2 | Dosimetric results of median dose in percent of the dose prescription of organs at risks for different clinical and preclinical TMI models.

Study Clinical 1 Clinical 2 Clinical 3 Clinical 4 (A) Clinical 4 (B) Clinical 5 Clinical 6 3D-Preclinical SOC-Preclinical

Treatment technique IMRT-Linac HT VMAT-Linac HT VMAT-Linac HT HT 3D-Preclinical TMI SOC-Preclinical TMI
Prescription dose (Gy) 12 6 12 12 12 13.5 20 12 12
Number of planned patients 3 1 6 4 4 12 8 5 5
OAR metric Median Dose (%)
Heart 52 70 46 53 48 35.5 31 10 12.6
Kidneys 47 40 45 60 40 33.7 29.7 81.6 1.6
Liver 50 70 49 60 54 44 NA 17.7 2.3
Lungs 36 57 60 48 50 48.5 32.7 52.6 4.2
Bowel 29 NA 49 40 47 36.4 38.9 31.7 17.2
4
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(15, 16). Through a detailed comparative evaluation of
dosimetric coverage, we observed that lungs and kidney
proximal to the skeletal target received relatively higher doses
in preclinical TMI than in clinical TMI. One of the most
important late effects of higher doses to the OAR is lung
pneumonitis (25–30). Lung pneumonitis is known to be the
major dose-limiting factor and has been reported to correlate
with the mean lung dose (25–28). Thus, sparing normal tissues
while maintaining dose conformality to the target might further
reduce the normal tissue complications, and thus, there is a need
for evaluating detail of OAR dosimetry and adaptation of
technology to reduce/vary dose to organs/tissues. IMRT is
widely used for conformal dose delivery in the clinic and is
being adopted for TMI. However, performing IMRT for small
animal experiments to closely mimic human clinical scenarios
faced insurmountable engineering challenges. To mitigate the
discrepancy and make the preclinical model more translatable,
we evaluated the next-generation preclinical TMI using SOC for
enhanced dosimetric conformality. SOC system is designed and
fabricated to be the first general-purpose small animal
IMRT platform.

To this end, we compared the dosimetric results of clinical
TMI studies, 3D-TMI preclinical model, and SOC-TMI
preclinical model. PTV of both clinical and preclinical TMI
studies showed good coverage. DVH of PTV in preclinical
TMI models showed a relatively high dose to bone medium
due to the photoelectric absorption of low energy x-ray (effective
energy of 78.8 keV) (17). The 3D-TMI showed larger dose
heterogeneity in comparison to SOC-TMI. This is because
there is limited available collimator to accurately cover the
irregular shaped geometry that causes overlap in some regions,
leading to some hot spots and less coverage in some regions,
leading to the cold spot. On the other hand, SOC-TMI uses
Frontiers in Oncology | www.frontiersin.org 6
automated and varied rectangular apertures to cover the target,
and reducing the heterogeneity.

Clinical TMI studies showed a large dose variation in organs
between centers. This is potentially due to the difference in dose
constraints, treatment machine, treatment techniques, patient
positioning, etc. Although the 3D-TMI preclinical model was
shown to be equivalent to the clinical TMI (16), the dose to the
lungs and kidneys was relatively higher due to their proximity to
the spine and lower 3D plan dose conformity. The SOC-TMI
method is based on RAO planning (31) and SOC dose modulator
(22, 32) for IMRT planning. Compared with the MLC-based
IMRT, SOC uses substantially fewer leaves while maintaining the
modulation resolution. Therefore, SOC is more conducive to
miniaturization. The performance of SOC for preclinical small-
field radiation has been physically demonstrated. Moreover,
SOC-TMI preclinical model showed a low integral dose to the
body compared with the 3D-TMI preclinical model. Whether
SOC-TMI delivery can improve integral dose may also be an
important question, particularly in association with secondary
cancer (33). As reported by D’Souza (34) in solid tumors, beam
margin size and beam energy are the most relevant parameters,
with smaller margins and higher energy consistently reducing
the integral dose to the body regardless of the number of beams.
In the two preclinical models, given the same beam energy of 225
keV (effective energy of 78.8-keV x-ray), one would expect that
the smaller margin used in SOC-TMI model because of the
shaped rectangular collimators leads to a reduction of the
integral dose. The 3D-TMI model dose delivery scheme
increases the (normalized) average dose to the body, thus
increasing the integral dose as well. According to the two TMI
model planning, number of beams, beam direction, and relative
beam weight have little effect on the integral dose. The superior
SOC-TMI dosimetry is evident in this study.
B C

D E

A

FIGURE 4 | Comparison of average dose volume histograms (DVH) for the (A) lungs, (B) kidneys, (C) liver, (D) bowel, and (E) PTV between six clinical TMI plans,
3D-preclinical model (red dotted lines), and the SOC-preclinical TMI model (dark red dashed lines).
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Compared with the 3D-TMI technique utilizing parallel-
opposed beams with manually created conformal fields, SOC-
TMI presents several major technological advances. The SOC-
TMI model will help to automatize treatment planning and
delivery and to achieve a more conformal and homogeneous
target dose. The SOC-TMI will also allow varying radiation doses
for each organ at risk for a larger range than the current clinical
and preclinical system. It will help us to enhance scientific
knowledge, namely, i) obtaining a radiobiological correlation of
dose versus tissue damage and their impact on the tissue repair
process and ii) understanding how varying radiation exposure to
organs could impact engraftment. Our recent study suggests that
a very low body dose may adversely impact engraftment (16).
However, little is known on how dose variation stimulates factors
(inflammatory cytokines, growth factors, etc.) that support
engraftment. This knowledge is essential to developing an
optimal radiation conditioning to achieve stable engraftment as
well as reduced toxicity. iii) There is clinical concern that reduced
doses to organs may reduce treatment efficacy because of the
systemic nature of the hematological disease. Therefore, our
initial clinical TMI development was to maintain a certain low
level of organ dose (to prevent increased toxicity) while
increasing BM-specific radiation to enhance the antileukemic
effect. Therefore, clinical question of preferred dose to specific
organs is not settled. This will require further investigation using
preclinical TMI in BMT and disease models. Such knowledge
radiation and biology will strengthen developing a rationale for
translation in future clinical trials which may require further
improvement in conformal radiation delivery by available
clinical machines.

The data presented in this study demonstrate the versatility of
SOC technology in providing exceptional target coverage and
OAR sparing capabilities for difficult techniques like TMI. SOC-
TMI preclinical model allowed a high-precision dose
optimization for targets such as bone, bone marrow, and
spleen and non-target vital organs. SOC-TMI preclinical has
statistically improved the TMI plan quality. In addition, the
SOC-TMI plans could deliver TMI treatment in an efficient
manner in terms of treatment time. The overall SOC-TMI
treatment planning time was approximately 45 min, which is
40% lower than the treatment time of the 3D-TMI model (~75
min). This offers a flexibility to tailor the treatment delivery
within a reasonable amount of time. This novel RAO for
SOC preclinical planning will substantially advance the
preclinical radiation research and reduces the gap in treatment
plan quality between clinical and preclinical radiotherapy,
potentially increasing the translatability of small animal studies.
Frontiers in Oncology | www.frontiersin.org 7
Despite the advantages of SOC-TMI, the current SOC-TMI has
several limitations. i) Tissue heterogeneity is not incorporated in
the model. Corrections were made for bone and lungs based on
their density table. ii) Availability of SOC hardware is limited,
preventing wide adoption and actual testing of SOC-TMI.
However, this simulation shows dosimetric advantages for
installing and commissioning of SOC-TMI in the future.
CONCLUSION

The preliminary results of SOC-TMI preclinical model are
promising. SOC-TMI dosimetry result shows that this
technique offers many attractive advantages. SOC-TMI
preclinical model could be used as a new method for delivering
TMI with high accuracy. SOC-TMI preclinical model
demonstrates excellent target dose conformity and the ability
to avoid unnecessary doses to critical structures adjacent to the
target volumes. In addition to the lungs and kidneys, substantial
radiation dose reductions to all sensitive structures are possible
with this new technique of a SOC for small animal intensity-
modulated TMI therapy.
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