85 research outputs found

    Phase diagram of CeVSb3 under pressure and its dependence on pressure conditions

    Get PDF
    We present temperature dependent resistivity and ac-calorimetry measurements of CeVSb3 under pressure up to 8 GPa in a Bridgman anvil cell modified to use a liquid medium and in a diamond anvil cell using argon as a pressure medium, respectively. We observe an initial increase of the ferromagnetic transition temperature Tc with pressures up to 4.5 GPa, followed by decrease of Tc on further increase of pressure and finally its disappearance, in agreement with the Doniach model. We infer a ferromagnetic quantum critical point around 7 GPa under hydrostatic pressure conditions from the extrapolation to 0 K of Tc and the maximum of the A coefficient from low temperature fits of the resistivity \rho (T)=\rho_{0}+AT^{n}. No superconductivity under pressure was observed down to 0.35 K for this compound. In addition, differences in the Tc(P) behavior when a slight uniaxial component is present are noticed and discussed and correlated to choice of pressure medium

    Valence and magnetic instabilities in Sm compounds at high pressures

    Full text link
    We report on the study of the response to high pressures of the electronic and magnetic properties of several Sm-based compounds, which span at ambient pressure the whole range of stable charge states between the divalent and the trivalent. Our nuclear forward scattering of synchrotron radiation and specific heat investigations show that in both golden SmS and SmB6 the pressure-induced insulator to metal transitions (at 2 and about 4-7 GPa, respectively) are associated with the onset of long-range magnetic order, stable up to at least 19 and 26 GPa, respectively. This long-range magnetic order, which is characteristic of Sm(3+), appears already for a Sm valence near 2.7. Contrary to these compounds, metallic Sm, which is trivalent at ambient pressure, undergoes a series of pressure-induced structural phase transitions which are associated with a progressive decrease of the ordered 4f moment.Comment: 15 pages (including 7 figures) submitted to J. Phys.: Condens. Matte

    Disordered Fulde-Ferrel-Larkin-Ovchinnikov State in d-wave Superconductors

    Full text link
    We study the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in the disordered systems. We analyze the microscopic model, in which the d-wave superconductivity is stabilized near the antiferromagnetic quantum critical point, and investigate two kinds of disorder, namely, box disorder and point disorder, on the basis of the Bogoliubov-deGennes (BdG) equation. The spatial structure of modulated superconducting order parameter and the magnetic properties in the disordered FFLO state are investigated. We point out the possibility of "FFLO glass" state in the presence of strong point disorders, which arises from the configurational degree of freedom of FFLO nodal plane. The distribution function of local spin susceptibility is calculated and its relation to the FFLO nodal plane is clarified. We discuss the NMR measurements for CeCoIn_5.Comment: Submitted to New. J. Phys. a focus issue on "Superconductors with Exotic Symmetries

    Valence and magnetic ordering in intermediate valence compounds : TmSe versus SmB6

    Full text link
    The intermediate valent systems TmSe and SmB6 have been investigated up to 16 and 18 GPa by ac microcalorimetry with a pressure (p) tuning realized in situ at low temperature. For TmSe, the transition from an antiferromagnetic insulator for p<3 GPa to an antiferromagnetic metal at higher pressure has been confirmed. A drastic change in the p variation of the Neel temperature (Tn) is observed at 3 GPa. In the metallic phase (p>3 GPa), Tn is found to increase linearly with p. A similar linear p increase of Tn is observed for the quasitrivalent compound TmS which is at ambiant pressure equivalent to TmSe at p=7 GPa. In the case of SmB6 long range magnetism has been detected above p=8 GPa, i.e. at a pressure slightly higher than the pressure of the insulator to metal transition. However a homogeneous magnetic phase occurs only above 10 GPa. The magnetic and electronic properties are related to the renormalization of the 4f wavefunction either to the divalent or the trivalent configurations. As observed in SmS, long range magnetism in SmB6 occurs already far below the pressure where a trivalent Sm3+ state will be reached. It seems possible, to describe roughly the physical properties of the intermediate valence equilibrium by assuming formulas for the Kondo lattice temperature depending on the valence configuration. Comparison is also made with the appearance of long range magnetism in cerium and ytterbium heavy fermion compounds.Comment: 22 pages including figure

    Calorimetric and transport investigations of CePd_{2+x}Ge_{2-x} (x=0 and 0.02) up to 22 GPa

    Full text link
    The influence of pressure on the magnetically ordered CePd_{2.02}Ge_{1.98} has been investigated by a combined measurement of electrical resistivity, ρ(T)\rho(T), and ac-calorimetry, C(T), for temperatures in the range 0.3 K<T<10 K and pressures, p, up to 22 GPa. Simultaneously CePd_2Ge_2 has been examined by ρ(T)\rho(T) down to 40 mK. In CePd_{2.02}Ge_{1.98} and CePd_2Ge_2 the magnetic order is suppressed at a critical pressure p_c=11.0 GPa and p_c=13.8 GPa, respectively. In the case of CePd_{2.02}Ge_{1.98} not only the temperature coefficient of ρ(T)\rho(T), A, indicates the loss of magnetic order but also the ac-signal 1/VacC/T1/V_{ac}\propto C/T recorded at low temperature. The residual resistivity is extremely pressure sensitive and passes through a maximum and then a minimum in the vicinity of p_c. The (T,p) phase diagram and the A(p)-dependence of both compounds can be qualitatively understood in terms of a pressure-tuned competition between magnetic order and the Kondo effect according to the Doniach picture. The temperature-volume (T,V) phase diagram of CePd_2Ge_2 combined with that of CePd_2Si_2 shows that in stoichiometric compounds mainly the change of interatomic distances influences the exchange interaction. It will be argued that in contrast to this the much lower p_c-value of CePd_{2.02}Ge_{1.98} is caused by an enhanced hybridization between 4f and conduction electrons.Comment: 9 pages, 7 figure

    High pressure phase diagrams of CeRhIn5_5 and CeCoIn5_5 studied by ac calorimetry

    Full text link
    The pressure-temperature phase diagrams of the heavy fermion antiferromagnet CeRhIn5_5 and the heavy fermion superconductor CeCoIn5_5 have been studied under hydrostatic pressure by ac calorimetry and ac susceptibility measurements using diamond anvil cells with argon as pressure medium. In CeRhIn5_5, the use of a highly hydrostatic pressure transmitting medium allows for a clean simultaneous determination by a bulk probe of the antiferromagnetic and superconducting transitions. We compare our new phase diagram with the previous ones, discuss the nature (first or second order) of the various lines, and the coexistence of antiferromagnetic order and superconductivity. The link between the collaps of the superconducting heat anomaly and the broadening of the antiferromagnetic transition points to an inhomogeneous appearence of superconductivity below Pc1.95P_c \approx 1.95 GPa. Homogeneous bulk superconductivity is only observed above this critical pressure. We present a detailed analysis of the influence of pressure inomogeneities on the specific heat anomalies which emphasizes that the observed broadening of the transitions near PcP_c is connected with the first order transition. For CeCoIn5_5 we show that the large specific heat anomaly observed at TcT_c at ambient pressure is suppressed linearly at least up to 3 GPa

    Diffusive energy transport in the S=1 Haldane chain compound AgVP2S6

    Full text link
    We present the results of measurements of the thermal conductivity κ\kappa of the spin S=1 chain compound AgVP_2S_6 in the temperature range between 2 and 300 K and with the heat flow directed either along or perpendicular to the chain direction. The analysis of the anisotropy of the heat transport allowed for the identification of a small but non-negligible magnon contribution κm\kappa_m along the chains, superimposed on the dominant phonon contribution κph\kappa_ph. At temperatures above about 100 K the energy diffusion constant D_E(T), calculated from the κm(T)\kappa_m(T) data, exhibits similar features as the spin diffusion constant D_S(T), previously measured by NMR. In this regime, the behaviour of both transport parameters is consistent with a diffusion process that is caused by interactions inherent to one-dimensional S=1 spin systems.Comment: 6 pages, 4 figure
    corecore