85 research outputs found
Phase diagram of CeVSb3 under pressure and its dependence on pressure conditions
We present temperature dependent resistivity and ac-calorimetry measurements
of CeVSb3 under pressure up to 8 GPa in a Bridgman anvil cell modified to use a
liquid medium and in a diamond anvil cell using argon as a pressure medium,
respectively. We observe an initial increase of the ferromagnetic transition
temperature Tc with pressures up to 4.5 GPa, followed by decrease of Tc on
further increase of pressure and finally its disappearance, in agreement with
the Doniach model. We infer a ferromagnetic quantum critical point around 7 GPa
under hydrostatic pressure conditions from the extrapolation to 0 K of Tc and
the maximum of the A coefficient from low temperature fits of the resistivity
\rho (T)=\rho_{0}+AT^{n}. No superconductivity under pressure was observed down
to 0.35 K for this compound. In addition, differences in the Tc(P) behavior
when a slight uniaxial component is present are noticed and discussed and
correlated to choice of pressure medium
Valence and magnetic instabilities in Sm compounds at high pressures
We report on the study of the response to high pressures of the electronic
and magnetic properties of several Sm-based compounds, which span at ambient
pressure the whole range of stable charge states between the divalent and the
trivalent. Our nuclear forward scattering of synchrotron radiation and specific
heat investigations show that in both golden SmS and SmB6 the pressure-induced
insulator to metal transitions (at 2 and about 4-7 GPa, respectively) are
associated with the onset of long-range magnetic order, stable up to at least
19 and 26 GPa, respectively. This long-range magnetic order, which is
characteristic of Sm(3+), appears already for a Sm valence near 2.7. Contrary
to these compounds, metallic Sm, which is trivalent at ambient pressure,
undergoes a series of pressure-induced structural phase transitions which are
associated with a progressive decrease of the ordered 4f moment.Comment: 15 pages (including 7 figures) submitted to J. Phys.: Condens. Matte
Disordered Fulde-Ferrel-Larkin-Ovchinnikov State in d-wave Superconductors
We study the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in
the disordered systems. We analyze the microscopic model, in which the d-wave
superconductivity is stabilized near the antiferromagnetic quantum critical
point, and investigate two kinds of disorder, namely, box disorder and point
disorder, on the basis of the Bogoliubov-deGennes (BdG) equation. The spatial
structure of modulated superconducting order parameter and the magnetic
properties in the disordered FFLO state are investigated. We point out the
possibility of "FFLO glass" state in the presence of strong point disorders,
which arises from the configurational degree of freedom of FFLO nodal plane.
The distribution function of local spin susceptibility is calculated and its
relation to the FFLO nodal plane is clarified. We discuss the NMR measurements
for CeCoIn_5.Comment: Submitted to New. J. Phys. a focus issue on "Superconductors with
Exotic Symmetries
Valence and magnetic ordering in intermediate valence compounds : TmSe versus SmB6
The intermediate valent systems TmSe and SmB6 have been investigated up to 16
and 18 GPa by ac microcalorimetry with a pressure (p) tuning realized in situ
at low temperature. For TmSe, the transition from an antiferromagnetic
insulator for p<3 GPa to an antiferromagnetic metal at higher pressure has been
confirmed. A drastic change in the p variation of the Neel temperature (Tn) is
observed at 3 GPa. In the metallic phase (p>3 GPa), Tn is found to increase
linearly with p. A similar linear p increase of Tn is observed for the
quasitrivalent compound TmS which is at ambiant pressure equivalent to TmSe at
p=7 GPa. In the case of SmB6 long range magnetism has been detected above p=8
GPa, i.e. at a pressure slightly higher than the pressure of the insulator to
metal transition. However a homogeneous magnetic phase occurs only above 10
GPa. The magnetic and electronic properties are related to the renormalization
of the 4f wavefunction either to the divalent or the trivalent configurations.
As observed in SmS, long range magnetism in SmB6 occurs already far below the
pressure where a trivalent Sm3+ state will be reached. It seems possible, to
describe roughly the physical properties of the intermediate valence
equilibrium by assuming formulas for the Kondo lattice temperature depending on
the valence configuration. Comparison is also made with the appearance of long
range magnetism in cerium and ytterbium heavy fermion compounds.Comment: 22 pages including figure
Calorimetric and transport investigations of CePd_{2+x}Ge_{2-x} (x=0 and 0.02) up to 22 GPa
The influence of pressure on the magnetically ordered CePd_{2.02}Ge_{1.98}
has been investigated by a combined measurement of electrical resistivity,
, and ac-calorimetry, C(T), for temperatures in the range 0.3 K<T<10 K
and pressures, p, up to 22 GPa. Simultaneously CePd_2Ge_2 has been examined by
down to 40 mK. In CePd_{2.02}Ge_{1.98} and CePd_2Ge_2 the magnetic
order is suppressed at a critical pressure p_c=11.0 GPa and p_c=13.8 GPa,
respectively. In the case of CePd_{2.02}Ge_{1.98} not only the temperature
coefficient of , A, indicates the loss of magnetic order but also the
ac-signal recorded at low temperature. The residual
resistivity is extremely pressure sensitive and passes through a maximum and
then a minimum in the vicinity of p_c. The (T,p) phase diagram and the
A(p)-dependence of both compounds can be qualitatively understood in terms of a
pressure-tuned competition between magnetic order and the Kondo effect
according to the Doniach picture. The temperature-volume (T,V) phase diagram of
CePd_2Ge_2 combined with that of CePd_2Si_2 shows that in stoichiometric
compounds mainly the change of interatomic distances influences the exchange
interaction. It will be argued that in contrast to this the much lower
p_c-value of CePd_{2.02}Ge_{1.98} is caused by an enhanced hybridization
between 4f and conduction electrons.Comment: 9 pages, 7 figure
High pressure phase diagrams of CeRhIn and CeCoIn studied by ac calorimetry
The pressure-temperature phase diagrams of the heavy fermion antiferromagnet
CeRhIn and the heavy fermion superconductor CeCoIn have been studied
under hydrostatic pressure by ac calorimetry and ac susceptibility measurements
using diamond anvil cells with argon as pressure medium. In CeRhIn, the use
of a highly hydrostatic pressure transmitting medium allows for a clean
simultaneous determination by a bulk probe of the antiferromagnetic and
superconducting transitions. We compare our new phase diagram with the previous
ones, discuss the nature (first or second order) of the various lines, and the
coexistence of antiferromagnetic order and superconductivity. The link between
the collaps of the superconducting heat anomaly and the broadening of the
antiferromagnetic transition points to an inhomogeneous appearence of
superconductivity below GPa. Homogeneous bulk
superconductivity is only observed above this critical pressure. We present a
detailed analysis of the influence of pressure inomogeneities on the specific
heat anomalies which emphasizes that the observed broadening of the transitions
near is connected with the first order transition. For CeCoIn we show
that the large specific heat anomaly observed at at ambient pressure is
suppressed linearly at least up to 3 GPa
Diffusive energy transport in the S=1 Haldane chain compound AgVP2S6
We present the results of measurements of the thermal conductivity
of the spin S=1 chain compound AgVP_2S_6 in the temperature range between 2 and
300 K and with the heat flow directed either along or perpendicular to the
chain direction. The analysis of the anisotropy of the heat transport allowed
for the identification of a small but non-negligible magnon contribution
along the chains, superimposed on the dominant phonon contribution
. At temperatures above about 100 K the energy diffusion constant
D_E(T), calculated from the data, exhibits similar features as
the spin diffusion constant D_S(T), previously measured by NMR. In this regime,
the behaviour of both transport parameters is consistent with a diffusion
process that is caused by interactions inherent to one-dimensional S=1 spin
systems.Comment: 6 pages, 4 figure
- …