150 research outputs found

    Fields of an ultrashort tightly focused laser pulse

    No full text
    Analytic expressions for the electromagnetic fields of an ultrashort, tightly focused, linearly polarized laser pulse in vacuum are derived from scalar and vector potentials, using a small parameter which assumes a small bandwidth of the laser pulse. The derived fields are compared with those of the Lax series expansion and the complex-source-point approaches and are shown to be well-behaved and accurate even in the subcycle pulse regime. We further demonstrate that terms stemming from the scalar potential and due to a fast varying pulse envelope are non-negligible and may significantly influence laser-matter interactions

    Thomson and Compton scattering with an intense laser pulse

    Full text link
    Our paper concerns the scattering of intense laser radiation on free electrons and it is focused on the relation between nonlinear Compton and nonlinear Thomson scattering. The analysis is performed for a laser field modeled by an ideal pulse with a finite duration, a fixed direction of propagation and indefinitely extended in the plane perpendicular to it. We derive the classical limit of the quantum spectral and angular distribution of the emitted radiation, for an arbitrary polarization of the laser pulse. We also rederive our result directly, in the framework of classical electrodynamics, obtaining, at the same time, the distribution for the emitted radiation with a well defined polarization. The results reduce to those established by Krafft et al. [Phys. Rev. E 72, 056502 (2005)] in the particular case of linear polarization of the pulse, orthogonal to the initial electron momentum. Conditions in which the differences between classical and quantum results are visible are discussed and illustrated by graphs

    Discrete Cylindrical Vector Beam Generation from an Array of Optical Fibers

    Full text link
    A novel method is presented for the beam shaping of far field intensity distributions of coherently combined fiber arrays. The fibers are arranged uniformly on the perimeter of a circle, and the linearly polarized beams of equal shape are superimposed such that the far field pattern represents an effective radially polarized vector beam, or discrete cylindrical vector (DCV) beam. The DCV beam is produced by three or more beams that each individually have a varying polarization vector. The beams are appropriately distributed in the near field such that the far field intensity distribution has a central null. This result is in contrast to the situation of parallel linearly polarized beams, where the intensity peaks on axis

    Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene.

    Get PDF
    Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all javax.xml.bind.JAXBElement@dc06fb4 clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor javax.xml.bind.JAXBElement@374d721c gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu javax.xml.bind.JAXBElement@4655f570 , Phe javax.xml.bind.JAXBElement@112b804a , Phe javax.xml.bind.JAXBElement@1f18e014 , and His javax.xml.bind.JAXBElement@4319ac79 ) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous javax.xml.bind.JAXBElement@2a0e3f1f gene of a terbinafine-sensitive javax.xml.bind.JAXBElement@67eac3c4 (formerly javax.xml.bind.JAXBElement@3f2a876d ) strain. All of the generated javax.xml.bind.JAXBElement@315e9e95 transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in javax.xml.bind.JAXBElement@6af3a966 transformants expressing mutant forms of javax.xml.bind.JAXBElement@5bb6b31f SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains

    Biological activity of ectodysplasin A is conditioned by its collagen and heparan sulfate proteoglycan-binding domains.

    Get PDF
    Mutations in the TNF family ligand EDA1 cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition characterized by defective development of skin appendages. The EDA1 protein displays a proteolytic processing site responsible for its conversion to a soluble form, a collagen domain, and a trimeric TNF homology domain (THD) that binds the receptor EDAR. In-frame deletions in the collagen domain reduced the thermal stability of EDA1. Removal of the collagen domain decreased its activity about 100-fold, as measured with natural and engineered EDA1-responsive cell lines. The collagen domain could be functionally replaced by multimerization domains or by cross-linking antibodies, suggesting that it functions as an oligomerization unit. Surprisingly, mature soluble EDA1 containing the collagen domain was poorly active when administered in newborn, EDA-deficient (Tabby) mice. This was due to a short stretch of basic amino acids located at the N terminus of the collagen domain that confers EDA1 with proteoglycan binding ability. In contrast to wild-type EDA1, EDA1 with mutations in this basic sequence was a potent inducer of tail hair development in vivo. Thus, the collagen domain activates EDA1 by multimerization, whereas the proteoglycan-binding domain may restrict the distribution of endogeneous EDA1 in vivo

    Theory of dressed states in quantum optics

    Get PDF
    The dual Dyson series [M.Frasca, Phys. Rev. A {\bf 58}, 3439 (1998)], is used to develop a general perturbative method for the study of atom-field interaction in quantum optics. In fact, both Dyson series and its dual, through renormalization group methods to remove secular terms from the perturbation series, give the opportunity of a full study of the solution of the Schr\"{o}dinger equation in different ranges of the parameters of the given hamiltonian. In view of recent experiments with strong laser fields, this approach seems well-suited to give a clarification and an improvement of the applications of the dressed states as currently done through the eigenstates of the atom-field interaction, showing that these are just the leading order of the dual Dyson series when the Hamiltonian is expressed in the interaction picture. In order to exploit the method at the best, a study is accomplished of the well-known Jaynes-Cummings model in the rotating wave approximation, whose exact solution is known, comparing the perturbative solutions obtained by the Dyson series and its dual with the same approximations obtained by Taylor expanding the exact solution. Finally, a full perturbative study of high-order harmonic generation is given obtaining, through analytical expressions, a clear account of the power spectrum using a two-level model, even if the method can be successfully applied to a more general model that can account for ionization too. The analysis shows that to account for the power spectrum it is needed to go to first order in the perturbative analysis. The spectrum obtained gives a way to measure experimentally the shift of the energy levels of the atom interacting with the laser field by looking at the shifting of hyper-Raman lines.Comment: Revtex, 17 page

    Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa.

    Get PDF
    Cannabis sativa has long been an important source of fiber extracted from hemp and both medicinal and recreational drugs based on cannabinoid compounds. Here, we investigated its poorly known domestication history using whole-genome resequencing of 110 accessions from worldwide origins. We show that C. sativa was first domesticated in early Neolithic times in East Asia and that all current hemp and drug cultivars diverged from an ancestral gene pool currently represented by feral plants and landraces in China. We identified candidate genes associated with traits differentiating hemp and drug cultivars, including branching pattern and cellulose/lignin biosynthesis. We also found evidence for loss of function of genes involved in the synthesis of the two major biochemically competing cannabinoids during selection for increased fiber production or psychoactive properties. Our results provide a unique global view of the domestication of C. sativa and offer valuable genomic resources for ongoing functional and molecular breeding research

    Evolution and Association Analysis of Ghd7 in Rice

    Get PDF
    Plant height, heading date, and yield are the main targets for rice genetic improvement. Ghd7 is a pleiotropic gene that controls the aforementioned traits simultaneously. In this study, a rice germplasm collection of 104 accessions (Oryza sativa) and 3 wild rice varieties (O.rufipogon) was used to analyze the evolution and association of Ghd7 with plant height, heading date, and yield. Among the 104 accessions, 76 single nucleotide polymorphisms (SNPs) and six insertions and deletions were found within a 3932-bp DNA fragment of Ghd7. A higher pairwise π and θ in the promoter indicated a highly diversified promoter of Ghd7. Sixteen haplotypes and 8 types of Ghd7 protein were detected. SNP changes between haplotypes indicated that Ghd7 evolved from two distinct ancestral gene pools, and independent domestication processes were detected in indica and japonica varietals respectively. In addition to the previously reported premature stop mutation in the first exon of Ghd7, which caused phenotypic changes of multiple traits, we found another functional C/T mutation (SNP S_555) by structure-based association analysis. SNP S_555 is located in the promoter and was related to plant height probably by altering gene expression. Moreover, another seven SNP mutations in complete linkage were found to be associated with the number of spikelets per panicle, regardless of the photoperiod. These associations provide the potential for flexibility of Ghd7 application in rice breeding programs

    Genome-Wide Haplotype Changes Produced by Artificial Selection during Modern Rice Breeding in Japan

    Get PDF
    During the last 90 years, the breeding of rice has delivered cultivars with improved agronomic and economic characteristics. Crossing of different lines and successive artificial selection of progeny based on their phenotypes have changed the chromosomal constitution of the ancestors of modern rice; however, the nature of these changes is unclear. The recent accumulation of data for genome-wide single-nucleotide polymorphisms (SNPs) in rice has allowed us to investigate the change in haplotype structure and composition. To assess the impact of these changes during modern breeding, we studied 177 Japanese rice accessions, which were categorized into three groups: landraces, improved cultivars developed from 1931 to 1974 (the early breeding phase), and improved cultivars developed from 1975 to 2005 (the late breeding phase). Phylogenetic tree and structure analysis indicated genetic differentiation between non-irrigated (upland) and irrigated (lowland) rice groups as well as genetic structuring within the irrigated rice group that corresponded to the existence of three subgroups. Pedigree analysis revealed that a limited number of landraces and cultivars was used for breeding at the beginning of the period of systematic breeding and that 11 landraces accounted for 70% of the ancestors of the modern improved cultivars. The values for linkage disequilibrium estimated from SNP alleles and the haplotype diversity determined from consecutive alleles in five-SNP windows indicated that haplotype blocks became less diverse over time as a result of the breeding process. A decrease in haplotype diversity, caused by a reduced number of polymorphisms in the haplotype blocks, was observed in several chromosomal regions. However, our results also indicate that new haplotype polymorphisms have been generated across the genome during the breeding process. These findings will facilitate our understanding of the association between particular haplotypes and desirable phenotypes in modern Japanese rice cultivars

    The Development of Three Long Universal Nuclear Protein-Coding Locus Markers and Their Application to Osteichthyan Phylogenetics with Nested PCR

    Get PDF
    BACKGROUND: Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. METHODOLOGY/PRINCIPAL FINDINGS: We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. CONCLUSIONS/SIGNIFICANCE: Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for phylogenetic questions of osteichthyans at different taxonomic levels
    corecore