6 research outputs found

    Engineering of color centers in SiC for photonics and solotronics

    No full text
    Les dĂ©fauts ponctuels dans les semi-conducteurs sont Ă©tudiĂ©s pour la rĂ©alisation de bits quantiques d’information (Qubit). A ce jour, le systĂšme le plus dĂ©veloppĂ© est le centre NV dans le diamant. RĂ©cemment, les dĂ©fauts ponctuels du carbure de silicium (SiC) ont Ă©tĂ© identifiĂ©s comme prometteurs pour la rĂ©alisation de Qubit en raison de leur long temps de cohĂ©rence de spin et du fonctionnement Ă  tempĂ©rature ambiante. Dans ce contexte, nous Ă©tudions la formation, la caractĂ©risation optique et magnĂ©tique des dĂ©fauts ponctuels dans SiC, ainsi que l’amĂ©lioration de la collection de leur luminescence. Nous commençons par une description des diffĂ©rents critĂšres qui font du SiC un matĂ©riau clĂ© pour les applications Qubit. Ensuite, nous prĂ©sentons une Ă©tude bibliographique sur les principaux dĂ©fauts ponctuels dans SiC en nous focalisant sur les centres : VSi, VSiVC, NV. Nous portons par la suite notre Ă©tude sur les conditions optimales d’irradiation ioniques/Ă©lectroniques et de recuit post-irradiation pour la formation de dĂ©fauts ponctuels luminescents dans le polytype cubique de SiC. Nous avons identifiĂ© les diffĂ©rents types de dĂ©fauts dans le visible. Dans l’infra-rouge, nous n’avons dĂ©tectĂ© que le centre VSiVC en trouvant les conditions optimales de sa luminescence dans le cas d’implantation par les protons (dose 1016 cm-2 et le recuit Ă  750 °C). Puis, nous avons comparĂ© les rĂ©sultats obtenus par des irradiations aux Ă©lectrons Ă  ceux obtenus avec les protons en prĂ©cisant les diffĂ©rents types de dĂ©fauts ponctuels dĂ©tectĂ©s par deux mĂ©thodes: la photoluminescence et la rĂ©sonance paramagnĂ©tique Ă©lectronique. Enfin, nous avons dĂ©veloppĂ© un processus technologique qui consiste en la fabrication de nano-piliers en SiC-4H. Nous avons montrĂ© les avantages de leur rĂ©alisation sur l’efficacitĂ© de la collection de PL des dĂ©fauts ponctuels comme VSi et VSiVC. Une amĂ©lioration d’un facteur 25 pour le centre VSi et d’un facteur 50 pour le centre VSiVC a Ă©tĂ© obtenue.Point defects in semiconductor materials are studied for the realization of quantum information bits (Qubit). Nowadays, the most developed system is based on the NV center in diamond. Recently, point defects in silicon carbide (SiC) have been identified as promising for the realization of Qubit due to the combination of their long spin coherence time and room temperature operation. In this context, this thesis studies the formation, optical and magnetic characterization of point defects in SiC, as well as the improvement of their luminescence collection. We begin with a general introduction to SiC in which we describe the different criteria that make SiC a key material for Qubit applications. Next, we present a bibliographical study on the main point defects in SiC, focusing on the centers: VSi, VSiVC, NV. We have studied the optimal conditions of ionic/electronic irradiation and post-irradiation annealing for the formation of luminescent point defects in the cubic polytype of SiC. We have identified the different types of visible range defects. In the infra-red range, we detected only the Ky5 center (VSiVC) by finding the optimal luminescence conditions of this center in the case of implantation by protons (dose 1016 cm-2 and annealing at 750 °C). Then, we compared the results obtained by electron irradiations with those obtained with protons specifying the different types of point defects detected by two methods: photoluminescence and electronic paramagnetic resonance. Finally, we have developed a technological process that consists of nano-pillars fabrication in SiC-4H. We have shown the advantages of realizing these pillars on the efficiency of the PL collection of point defects like VSi and VSiVC : an improvement of a factor of 25 for the VSi center and a factor of 50 for the VSiVC center was obtained

    Engineering of color centers in SiC for photonics and solotronics

    No full text
    Les dĂ©fauts ponctuels dans les semi-conducteurs sont Ă©tudiĂ©s pour la rĂ©alisation de bits quantiques d’information (Qubit). A ce jour, le systĂšme le plus dĂ©veloppĂ© est le centre NV dans le diamant. RĂ©cemment, les dĂ©fauts ponctuels du carbure de silicium (SiC) ont Ă©tĂ© identifiĂ©s comme prometteurs pour la rĂ©alisation de Qubit en raison de leur long temps de cohĂ©rence de spin et du fonctionnement Ă  tempĂ©rature ambiante. Dans ce contexte, nous Ă©tudions la formation, la caractĂ©risation optique et magnĂ©tique des dĂ©fauts ponctuels dans SiC, ainsi que l’amĂ©lioration de la collection de leur luminescence. Nous commençons par une description des diffĂ©rents critĂšres qui font du SiC un matĂ©riau clĂ© pour les applications Qubit. Ensuite, nous prĂ©sentons une Ă©tude bibliographique sur les principaux dĂ©fauts ponctuels dans SiC en nous focalisant sur les centres : VSi, VSiVC, NV. Nous portons par la suite notre Ă©tude sur les conditions optimales d’irradiation ioniques/Ă©lectroniques et de recuit post-irradiation pour la formation de dĂ©fauts ponctuels luminescents dans le polytype cubique de SiC. Nous avons identifiĂ© les diffĂ©rents types de dĂ©fauts dans le visible. Dans l’infra-rouge, nous n’avons dĂ©tectĂ© que le centre VSiVC en trouvant les conditions optimales de sa luminescence dans le cas d’implantation par les protons (dose 1016 cm-2 et le recuit Ă  750 °C). Puis, nous avons comparĂ© les rĂ©sultats obtenus par des irradiations aux Ă©lectrons Ă  ceux obtenus avec les protons en prĂ©cisant les diffĂ©rents types de dĂ©fauts ponctuels dĂ©tectĂ©s par deux mĂ©thodes: la photoluminescence et la rĂ©sonance paramagnĂ©tique Ă©lectronique. Enfin, nous avons dĂ©veloppĂ© un processus technologique qui consiste en la fabrication de nano-piliers en SiC-4H. Nous avons montrĂ© les avantages de leur rĂ©alisation sur l’efficacitĂ© de la collection de PL des dĂ©fauts ponctuels comme VSi et VSiVC. Une amĂ©lioration d’un facteur 25 pour le centre VSi et d’un facteur 50 pour le centre VSiVC a Ă©tĂ© obtenue.Point defects in semiconductor materials are studied for the realization of quantum information bits (Qubit). Nowadays, the most developed system is based on the NV center in diamond. Recently, point defects in silicon carbide (SiC) have been identified as promising for the realization of Qubit due to the combination of their long spin coherence time and room temperature operation. In this context, this thesis studies the formation, optical and magnetic characterization of point defects in SiC, as well as the improvement of their luminescence collection. We begin with a general introduction to SiC in which we describe the different criteria that make SiC a key material for Qubit applications. Next, we present a bibliographical study on the main point defects in SiC, focusing on the centers: VSi, VSiVC, NV. We have studied the optimal conditions of ionic/electronic irradiation and post-irradiation annealing for the formation of luminescent point defects in the cubic polytype of SiC. We have identified the different types of visible range defects. In the infra-red range, we detected only the Ky5 center (VSiVC) by finding the optimal luminescence conditions of this center in the case of implantation by protons (dose 1016 cm-2 and annealing at 750 °C). Then, we compared the results obtained by electron irradiations with those obtained with protons specifying the different types of point defects detected by two methods: photoluminescence and electronic paramagnetic resonance. Finally, we have developed a technological process that consists of nano-pillars fabrication in SiC-4H. We have shown the advantages of realizing these pillars on the efficiency of the PL collection of point defects like VSi and VSiVC : an improvement of a factor of 25 for the VSi center and a factor of 50 for the VSiVC center was obtained

    Ingénierie des centres colorés dans SiC pour la photonique et la solotronique

    Get PDF
    Point defects in semiconductor materials are studied for the realization of quantum information bits (Qubit). Nowadays, the most developed system is based on the NV center in diamond. Recently, point defects in silicon carbide (SiC) have been identified as promising for the realization of Qubit due to the combination of their long spin coherence time and room temperature operation. In this context, this thesis studies the formation, optical and magnetic characterization of point defects in SiC, as well as the improvement of their luminescence collection. We begin with a general introduction to SiC in which we describe the different criteria that make SiC a key material for Qubit applications. Next, we present a bibliographical study on the main point defects in SiC, focusing on the centers: VSi, VSiVC, NV. We have studied the optimal conditions of ionic/electronic irradiation and post-irradiation annealing for the formation of luminescent point defects in the cubic polytype of SiC. We have identified the different types of visible range defects. In the infra-red range, we detected only the Ky5 center (VSiVC) by finding the optimal luminescence conditions of this center in the case of implantation by protons (dose 1016 cm-2 and annealing at 750 °C). Then, we compared the results obtained by electron irradiations with those obtained with protons specifying the different types of point defects detected by two methods: photoluminescence and electronic paramagnetic resonance. Finally, we have developed a technological process that consists of nano-pillars fabrication in SiC-4H. We have shown the advantages of realizing these pillars on the efficiency of the PL collection of point defects like VSi and VSiVC : an improvement of a factor of 25 for the VSi center and a factor of 50 for the VSiVC center was obtained.Les dĂ©fauts ponctuels dans les semi-conducteurs sont Ă©tudiĂ©s pour la rĂ©alisation de bits quantiques d’information (Qubit). A ce jour, le systĂšme le plus dĂ©veloppĂ© est le centre NV dans le diamant. RĂ©cemment, les dĂ©fauts ponctuels du carbure de silicium (SiC) ont Ă©tĂ© identifiĂ©s comme prometteurs pour la rĂ©alisation de Qubit en raison de leur long temps de cohĂ©rence de spin et du fonctionnement Ă  tempĂ©rature ambiante. Dans ce contexte, nous Ă©tudions la formation, la caractĂ©risation optique et magnĂ©tique des dĂ©fauts ponctuels dans SiC, ainsi que l’amĂ©lioration de la collection de leur luminescence. Nous commençons par une description des diffĂ©rents critĂšres qui font du SiC un matĂ©riau clĂ© pour les applications Qubit. Ensuite, nous prĂ©sentons une Ă©tude bibliographique sur les principaux dĂ©fauts ponctuels dans SiC en nous focalisant sur les centres : VSi, VSiVC, NV. Nous portons par la suite notre Ă©tude sur les conditions optimales d’irradiation ioniques/Ă©lectroniques et de recuit post-irradiation pour la formation de dĂ©fauts ponctuels luminescents dans le polytype cubique de SiC. Nous avons identifiĂ© les diffĂ©rents types de dĂ©fauts dans le visible. Dans l’infra-rouge, nous n’avons dĂ©tectĂ© que le centre VSiVC en trouvant les conditions optimales de sa luminescence dans le cas d’implantation par les protons (dose 1016 cm-2 et le recuit Ă  750 °C). Puis, nous avons comparĂ© les rĂ©sultats obtenus par des irradiations aux Ă©lectrons Ă  ceux obtenus avec les protons en prĂ©cisant les diffĂ©rents types de dĂ©fauts ponctuels dĂ©tectĂ©s par deux mĂ©thodes: la photoluminescence et la rĂ©sonance paramagnĂ©tique Ă©lectronique. Enfin, nous avons dĂ©veloppĂ© un processus technologique qui consiste en la fabrication de nano-piliers en SiC-4H. Nous avons montrĂ© les avantages de leur rĂ©alisation sur l’efficacitĂ© de la collection de PL des dĂ©fauts ponctuels comme VSi et VSiVC. Une amĂ©lioration d’un facteur 25 pour le centre VSi et d’un facteur 50 pour le centre VSiVC a Ă©tĂ© obtenue

    Combined EPR and photoluminescence study of electron and proton irradiated 3C-SiC

    No full text
    International audienceIn past few years, point defects in silicon carbide (SiC) have been identified as promising for applications in quantum technologies [1]. A variety of point defects in hexagonal SiC [2], including VSi and VSiVC have been optically isolated and used as single defect-based spin qubits with long coherence time [3-5]. All of this, proves that these point defects allow the SiC to be a very favorable candidate for quantum applications especially, solid state quantum bits (Qubits) and single photon source (SPS). Most of these studies were carried out on the hexagonal polytypes 4H-SiC and 6H-SiC, although the 3C-SiC polytype presents the unique advantage of integration possibility on standard Si wafer. This is due to the amount of defects (dislocation mainly) in the 3C-SiC heteroepitaxy on Si which are detrimental for long coherence time considering Qubit application. Consequently, the goal of the present study is the investigation of point defects formation after implantation by proton H + (300 keV) and irradiation by electron e-(0.8 and 2 MeV) in 3C-SiC (respectively 3C-SiC and 3C-SiC) for SPS application purpose. Toward this end, we have combined two characterization techniques, the photoluminescence (PL) and the electron paramagnetic resonance (EPR). PL (12K) and EPR (70-300K) measurements will be presented in order to analyze precisely the signatures of point defects generated after these two types of irradiations. The effects of the thermal annealing (500-1000°C) were also investigated. PL spectra both for 3C-SiC and 3C-SiC are presented in figure 1 for the annealing temperatures giving the highest PL signal (1000°C for 3C-SiC and 750°C for 3C-SiC). We notice first that the whole PL signal is higher for 3C-SiC. In this case the spectrum is dominated by the DI defect line (possibly related to antisite pair [6]) and the E line (attributed to Si vacancy [7, 8]) while in electron irradiated sample the line (attributed to CSiVC in a 3C-SiC nanocrystal [8]) dominates as previously reported [9]. A strong zero phonon line at 1.6 eV also appears for 3C-SiC with its phonon replica. This line was previously observed also for neutron and proton irradiated 3C-SiC and at present is of unknown origin [10, 11]. In the infrared range, the proton implantation is also more efficient to produce the VcVsi PL line with an optimum luminescence for 750°C annealing. All together, these results show that, even if the energy transferred to the host atoms during electron irradiation is quite above the displacement thresholds for both C and Si, defects involving Si vacancy are more pronounced in 3C-SiC samples. EPR spectra for 3C-SiC for isochronal annealing (30 min.) at different temperatures are presented in figure 2. The spin-three-half negatively-charged Si vacancy (the T1 center) is a dominant defect in 3C-SiC epitaxial layers corresponding to the E line in the PL spectra. Similar to neutron irradiated 3C-SiC crystals the as-implanted not annealed 3C-SiC samples demonstrate an isotropic spectrum with the g-value of 2.0029 and a superhyperfine doublet with a splitting typical to the T1 cente

    Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

    No full text
    We report the enhancement of the optical emission between 850 and 1400 nm of an ensemble of silicon mono-vacancies (VSi), silicon and carbon divacancies (VCVSi), and nitrogen vacancies (NCVSi) in an n-type 4H-SiC array of micropillars. The micropillars have a length of ca. 4.5 Όm and a diameter of ca. 740 nm, and were implanted with H+ ions to produce an ensemble of colorcenters at a depth of approximately 2 Όm. The samples were in part annealed at different temperatures (750 and 900 °C) to selectively produce distinct color centers. For all these color centers we saw an enhancement of the photostable fluorescence emission of at least a factor of 6 using micro-photoluminescence systems. Using custom confocal microscopy setups, we characterized theemission of VSi measuring an enhancement by up to a factor of 20, and of NCVSi with an enhancement up to a factor of 7. The experimental results are supported by finite element method simulations. Our study provides the pathway for device design and fabrication with an integrated ultra-bright ensemble of VSi and NCVSi for in vivo imaging and sensing in the infrared
    corecore