38 research outputs found

    Determination of liver specific toxicities in rat hepatocytes by high content imaging during 2-week multiple treatment

    Get PDF
    AbstractDILI is a major safety issue during drug development and one of the leading causes for market withdrawal. Despite many efforts made in the past, the prediction of DILI using in vitro models remains very unreliable. In the present study, the well-established hepatocyte Collagen I-Matrigel™ sandwich culture was used, mimicking chronic drug treatment after multiple incubations for 14days. Ten drugs associated with different types of specific preclinical and clinical liver injury were evaluated at non-cytotoxic concentrations. Mrp2-mediated transport, intracellular accumulation of neutral lipids and phospholipids were selected as functional endpoints by using Cellomics™ Arrayscan® technology and assessed at five timepoints (day 1, 3, 7, 10, 14). Liver specific functional impairments after drug treatment were enhanced over time and could be monitored by HCI already after few days and before cytotoxicity. Phospholipidosis-inducing drugs Chlorpromazine and Amiodarone displayed the same response as in vivo. Cyclosporin A, Chlorpromazine, and Troglitazone inhibited Mrp2-mediated biliary transport, correlating with in vivo findings. Steatosis remained difficult to be reproduced under the current in vitro testing conditions, resulting into false negative and positive responses. The present results suggest that the repeated long-term treatment of rat hepatocytes in the Collagen I-Matrigel™ sandwich configuration might be a suitable tool for safety profiling of the potential to induce phospholipidosis and impair Mrp2-mediated transport processes, but not to predict steatosis

    TNF-α antagonists differentially induce TGF-β1-dependent resuscitation of dormant-like Mycobacterium tuberculosis

    Get PDF
    TNF-α- as well as non-TNF-α-targeting biologics are prescribed to treat a variety of immune-mediated inflammatory disorders. The well-documented risk of tuberculosis progression associated with anti-TNF-α treatment highlighted the central role of TNF-α for the maintenance of protective immunity, although the rate of tuberculosis detected among patients varies with the nature of the drug. Using a human, in-vitro granuloma model, we reproduce the increased reactivation rate of tuberculosis following exposure to Adalimumab compared to Etanercept, two TNF-α-neutralizing biologics. We show that Adalimumab, because of its bivalence, specifically induces TGF-β1-dependent Mycobacterium tuberculosis (Mtb) resuscitation which can be prevented by concomitant TGF-β1 neutralization. Moreover, our data suggest an additional role of lymphotoxin-α-neutralized by Etanercept but not Adalimumab-in the control of latent tuberculosis infection. Furthermore, we show that, while Secukinumab, an anti-IL-17A antibody, does not revert Mtb dormancy, the anti-IL-12-p40 antibody Ustekinumab and the recombinant IL-1RA Anakinra promote Mtb resuscitation, in line with the importance of these pathways in tuberculosis immunity

    Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome.

    Get PDF
    BACKGROUND: Fragile X syndrome (FXS) is the most common form of inherited intellectual disability, resulting from the loss of function of the fragile X mental retardation 1 (FMR1) gene. The molecular pathways associated with FMR1 epigenetic silencing are still elusive, and their characterization may enhance the discovery of novel therapeutic targets as well as the development of novel clinical biomarkers for disease status. RESULTS: We have deployed customized epigenomic profiling assays to comprehensively map the FMR1 locus chromatin landscape in peripheral mononuclear blood cells (PBMCs) from eight FXS patients and in fibroblast cell lines derived from three FXS patient. Deoxyribonucleic acid (DNA) methylation (5-methylcytosine (5mC)) and hydroxymethylation (5-hydroxymethylcytosine (5hmC)) profiling using methylated DNA immunoprecipitation (MeDIP) combined with a custom FMR1 microarray identifies novel regions of DNA (hydroxy)methylation changes within the FMR1 gene body as well as in proximal flanking regions. At the region surrounding the FMR1 transcriptional start sites, increased levels of 5mC were associated to reciprocal changes in 5hmC, representing a novel molecular feature of FXS disease. Locus-specific validation of FMR1 5mC and 5hmC changes highlighted inter-individual differences that may account for the expected DNA methylation mosaicism observed at the FMR1 locus in FXS patients. Chromatin immunoprecipitation (ChIP) profiling of FMR1 histone modifications, together with 5mC/5hmC and gene expression analyses, support a functional relationship between 5hmC levels and FMR1 transcriptional activation and reveal cell-type specific differences in FMR1 epigenetic regulation. Furthermore, whilst 5mC FMR1 levels positively correlated with FXS disease severity (clinical scores of aberrant behavior), our data reveal for the first time an inverse correlation between 5hmC FMR1 levels and FXS disease severity. CONCLUSIONS: We identify novel, cell-type specific, regions of FMR1 epigenetic changes in FXS patient cells, providing new insights into the molecular mechanisms of FXS. We propose that the combined measurement of 5mC and 5hmC at selected regions of the FMR1 locus may significantly enhance FXS clinical diagnostics and patient stratification

    Gene Expression Patterns in Peripheral Blood Correlate with the Extent of Coronary Artery Disease

    Get PDF
    Systemic and local inflammation plays a prominent role in the pathogenesis of atherosclerotic coronary artery disease, but the relationship of whole blood gene expression changes with coronary disease remains unclear. We have investigated whether gene expression patterns in peripheral blood correlate with the severity of coronary disease and whether these patterns correlate with the extent of atherosclerosis in the vascular wall

    Regulation of Allergic Responses to Chemicals: Possible Roles of Epigenetic Mechanisms

    No full text
    There is increasing evidence that epigenetic regulation of gene expression plays a pivotal role in the orchestration of immune and allergic responses. Such regulatory mechanisms have potentially important implications for the acquisition of sensitization to chemical and drug allergens, and in determining the vigor, characteristics and longevity of allergic responses. Importantly, the discovery of long-lasting epigenetic alterations in specific immunoregulatory genes provides a mechanistic basis for immune cell memory, and thereby the potential of chemical allergens to influence the subsequent orientation of the adaptive immune system. In this article we consider the implications of epigenetic mechanisms for the development of sensitization to chemical allergens and the form that allergic reactions will take

    Bile acids in drug induced liver injury: Key players and surrogate markers

    Get PDF
    Bile acid research has gained great momentum since the role of bile acids as key signaling molecules in the enterohepatic circulation was discovered. Their physiological function in regulating their own homeostasis, as well as energy and lipid metabolism make them interesting targets for the pharmaceutical industry in the context of diseases such as bile acid induced diarrhea, bile acid induced cholestasis or nonalcoholic steatohepatitis. Changes in bile acid homeostasis are also linked to various types of drug-induced liver injury (DILI). However, the key question whether bile acids are surrogate markers for monitoring DILI or key pathogenic players in the onset and progression of DILI is under intense investigation. The purpose of this review is to summarize the different facets of bile acids in the context of normal physiology, hereditary defects of bile acid transport and DILI

    The Utility of Gene Expression Profiling from Tissue Samples to Support Drug Safety Assessments

    No full text
    Originally conceptualized as an integrated approach combining conventional toxicology methods with genome-wide expression profiling, toxicogenomics has promised to provide unequivocal relationships between the molecular changes elicited by a compound or a target pathway and the lesions that appear subsequently in the tissues. However, the discipline has only partially delivered on this promise, and the number of publications and submissions related to toxicogenomics is stagnating. The purpose of this article is to outline key factors contributing to a successful implementation of toxicogenomics in the drug discovery and development process. Paradigms and methods of toxicogenomics are briefly reviewed, and the prominence of biostatistics and its limitations in the particular context of nonclinical toxicology studies are discussed. We present specific approaches for pathophysiological contextualization of gene expression data derived from tissues with lesions at variable incidence and severity: “unmixing” (deconvolution) of molecular expression profiles from complex tissues, the invaluable contribution of reference data, the role of establishing causation between expression signals and pathologic changes (phenotypic anchoring), and especially molecular localization. These approaches compensate for the limitations of biostatistical analysis, which in turn, derive from tissue heterogeneity. Finally, impactful applications of toxicogenomics along the drug discovery and development process are exemplified, from the evaluation of potential target toxicities to the selection of candidate compounds and elucidation of the molecular and cellular mechanisms leading to chronic toxicity

    Bile acids in drug induced liver injury: key players and surrogate markers

    No full text
    Bile acid research has gained great momentum since the role of bile acids as key signaling molecules in the enterohepatic circulation was discovered. Their physiological function in regulating their own homeostasis, as well as energy and lipid metabolism make them interesting targets for the pharmaceutical industry in the context of diseases such as bile acid induced diarrhea, bile acid induced cholestasis or nonalcoholic steatohepatitis. Changes in bile acid homeostasis are also linked to various types of drug-induced liver injury (DILI). However, the key question whether bile acids are surrogate markers for monitoring DILI or key pathogenic players in the onset and progression of DILI is under intense investigation. The purpose of this review is to summarize the different facets of bile acids in the context of normal physiology, hereditary defects of bile acid transport and DILI
    corecore