17 research outputs found

    Changes in salivary physiological stress markers induced by muscle stretching in patients with irritable bowel syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Psychophysiological processing has been reported to play a crucial role in irritable bowel syndrome (IBS) but there has been no report on modulation of the stress marker chromogranin A (CgA) resulting from muscle stretching. We hypothesized that abdominal muscle stretching as a passive operation would have a beneficial effect on a biochemical index of the activity of the sympathetic/adrenomedullary system (salivary CgA) and anxiety.</p> <p>Methods</p> <p>Fifteen control and eighteen untreated IBS subjects underwent experimental abdominal muscle stretching for 4 min. Subjects relaxed in a supine position with their knees fully flexed while their pelvic and trunk rotation was passively and slowly moved from 0 degrees of abdominal rotation to about 90 degrees or the point where the subject reported feeling discomfort.</p> <p>Changes in the Gastrointestinal Symptoms Rating Scale (GSRS), State Trait Anxiety Inventory (STAI), Self-rating Depression Scale (SDS), ordinate scale and salivary CgA levels were compared between controls and IBS subjects before and after stretching. A three-factor analysis of variance (ANOVA) with period (before vs. after) as the within-subject factor and group (IBS vs. Control), and sex (men vs. female) as the between-subject factors was carried out on salivary CgA.</p> <p>Results</p> <p>CgA showed significant interactions between period and groups (F[1, 31] = 4.89, p = 0.03), and between groups and sex (F[1, 31] = 4.73, p = 0.03). Interactions between period and sex of CgA secretion were not shown (F[1, 3] = 2.60, p = 0.12). At the baseline, salivary CgA in IBS subjects (36.7 ± 5.9 pmol/mg) was significantly higher than in controls (19.9 ± 5.5 pmol/mg, p < 0.05). After the stretching, salivary CgA significantly decreased in the IBS group (25.5 ± 4.5 pmol/mg), and this value did not differ from that in controls (18.6 ± 3.9 pmol/mg).</p> <p>Conclusion</p> <p>Our results suggest the possibility of improving IBS pathophysiology by passive abdominal muscle stretching as indicated by CgA, a biochemical index of the activity of the sympathetic/adrenomedullary system.</p

    Chromatophore Activity during Natural Pattern Expression by the Squid Sepioteuthis lessoniana: Contributions of Miniature Oscillation

    Get PDF
    Squid can rapidly change the chromatic patterns on their body. The patterns are created by the expansion and retraction of chromatophores. The chromatophore consists of a central pigment-containing cell surrounded by radial muscles that are controlled by motor neurons located in the central nervous system (CNS). In this study we used semi-intact squid (Sepioteuthis lessoniana) displaying centrally controlled natural patterns to analyze spatial and temporal activities of chromatophores located on the dorsal mantle skin. We found that chromatophores oscillated with miniature expansions/retractions at various frequencies, even when the chromatic patterns appear macroscopically stable. The frequencies of this miniature oscillation differed between “feature” and “background” areas of chromatic patterns. Higher frequencies occurred in feature areas, whereas lower frequencies were detected in background areas. We also observed synchronization of the oscillation during chromatic pattern expression. The expansion size of chromatophores oscillating at high frequency correlated with the number of synchronized chromatophores but not the oscillation frequency. Miniature oscillations were not observed in denervated chromatophores. These results suggest that miniature oscillations of chromatophores are driven by motor neuronal activities in the CNS and that frequency and synchrony of this oscillation determine the chromatic pattern and the expansion size, respectively

    Suppression and Regression of Choroidal Neovascularization in Mice by a Novel CCR2 Antagonist, INCB3344

    Get PDF
    PURPOSE: To investigate the effect of an intravitreally administered CCR2 antagonist, INCB3344, on a mouse model of choroidal neovascularization (CNV). METHODS: CNV was induced by laser photocoagulation on Day 0 in wild type mice. INCB3344 or vehicle was administered intravitreally immediately after laser application. On Day 14, CNV areas were measured on retinal pigment epithelium (RPE)-choroid flat mounts and histopathologic examination was performed on 7 µm-thick sections. Macrophage infiltration was evaluated by immunohistochemistry on RPE-choroid flat mounts and quantified by flow cytometry on Day 3. Expression of vascular endothelial growth factor (VEGF) protein in RPE-choroid tissue was examined by immunohistochemistry and ELISA, VEGF mRNA in sorted macrophages in RPE-choroid tissue was examine by real-time PCR and expression of phosphorylated extracellular signal-regulated kinase (p-ERK 1/2) in RPE-choroid tissue was measured by Western blot analysis on Day 3. We also evaluated the efficacy of intravitreal INCB3344 to spontaneous CNV detected in Cu, Zn-superoxide dismutase (SOD1) deficient mice. Changes in CNV size were assessed between pre- and 1week post-INCB3344 or vehicle administration in fundus photography and fluorescence angiography (FA). RESULTS: The mean CNV area in INCB3344-treated mice decreased by 42.4% compared with the vehicle-treated control mice (p<0.001). INCB3344 treatment significantly inhibited macrophage infiltration into the laser-irradiated area (p<0.001), and suppressed the expression of VEGF protein (p = 0.012), VEGF mRNA in infiltrating macrophages (p<0.001) and the phosphorylation of ERK1/2 (p<0.001). The area of spontaneous CNV in Sod1⁻/⁻ mice regressed by 70.35% in INCB3344-treated animals while no change was detected in vehicle-treated control mice (p<0.001). CONCLUSIONS: INCB3344 both inhibits newly forming CNV and regresses established CNV. Controlling inflammation by suppressing macrophage infiltration and angiogenic ability via the CCR-2/MCP-1 signal may be a useful therapeutic strategy for treating CNV associated with age-related macular degeneration

    Motion Analysis of the Front Crawl Stroke in Physically Disabled Swimmers with Above and Below the Elbow Amputations

    No full text
    The purpose of this study was to investigate strake characteristics by analyzing two-dimensional motion during the front crawl stroke of physically disabled swimmers with above and below the elbow amputations, and to draw up guidelines for coaching methods for physically disabled swimmers. The subjects who volunteered for this study were two swimmers with an above elbow amputation. and two swimmers with a below elbow amputation. Front crawl strokes were filmed from a lateral angle at the center of the pool, using an underwater digital video camera. In the results of the motion analysis, the stroke technique was presented for each stroke of a subject to clarify the comparison between the non-amputation side and the amputation side. The stroke on the non-amputation side showed remarkable curvilinear pulling patterns. Moreover, the swimmers kept a better stroke balance by leangthening the gliding distance during the downsweep phase from entry to catch of the stroke on the amputation side. Therefore, it was concluded that stroke characteristics of physically disabled swimmers with amputations could be investigated by analyzing the stroke motion, and this motion analysis could be utilized as an effective method for improving their stroke techniques and performance
    corecore