424 research outputs found

    Lepton-nucleus scattering in the impulse approximation regime

    Full text link
    We discuss theoretical calculations of electron- and neutrino-nucleus scattering, carried out using realistic nuclear spectral functions and including the effect of final state interactions. Comparison between electron scattering data and the calculated inclusive cross sections off oxygen shows that the Fermi gas model fails to provide a satisfactory description of the measured cross sections, and inclusion of nuclear dynamics is needed. The role of Pauli blocking in charged-current neutrino induced reactions at low Q2Q^2 is also analyzed.Comment: To be published in the Proceedings of NUFACT05 (Nucl. Phys. B, Proceedings Supplements

    Integrative assembly of heteroleptic tetrahedra controlled by backbone steric bulk

    Get PDF
    A bent fluorenone-based dipyridyl ligand LA reacts with PdII cations to a solvent-dependent dynamic library of [PdnL2n] assemblies, constituted by a [Pd3LA6] ring and a [Pd4LA8] tetrahedron as major components, and a [Pd6LA12] octahedron as minor component. Introduction of backbone steric hindrance in ligand LB allows exclusive formation of the [Pd6LB12] octahedron. Combining equimolar amounts of both ligands results in integrative self-sorting to give an unprecedented [Pd4LA4LB4] heteroleptic tetrahedron. Key to the non-statistical assembly outcome is exploiting the structural peculiarity of the [Pd4L8] tetrahedral topology, where the four lean ligands occupy two doubly bridged edges and the bulky ligands span the four remaining, singly bridged edges. Hence, the system finds a compromise between the entropic drive to form an assembly smaller than the octahedron and the enthalpic prohibition of pairing two bulky ligands on the same edge of the triangular ring. The emission of luminescent LA is maintained in both homoleptic [Pd3LA6] and heteroleptic [Pd4LA4LB4]

    Nuclear corrections of parton distribution functions

    Full text link
    We report global analysis results of experimental data for nuclear structure-function ratios F_2^A/F_2^{A'} and proton-nucleus Drell-Yan cross-section ratios sigma_{DY}^{pA}/sigma_{DY}^{pA'} in order to determine optimum parton distribution functions (PDFs) in nuclei. An important point of this analysis is to show uncertainties of the distributions by the Hessian method. The results indicate that the uncertainties are large for gluon distributions in the whole x region and for antiquark distributions at x>0.2. We provide a code for calculating any nuclear PDFs at given x and Q^2 for general users. They can be used for calculating high-energy nuclear reactions including neutrino-nucleus interactions, which are discussed at this workshop.Comment: 1+6 pages, LaTeX, 10 eps files, espcrc2.sty, to be published in Nucl. Phys. B Supplements, Proceedings of the Third International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt04), Gran Sasso, Italy, March 17-21, 2004. Nuclear PDF library is available at http://hs.phys.saga-u.ac.jp/nuclp.htm

    Electron- and neutrino-nucleus scattering in the impulse approximation regime

    Get PDF
    A quantitative understanding of the weak nuclear response is a prerequisite for the analyses of neutrino experiments such as K2K and MiniBOONE, which measure energy and angle of the muons produced in neutrino-nucleus interactions in the energy range 0.530.5-3 GeV and reconstruct the incident neutrino energy to determine neutrino oscillations. In this paper we discuss theoretical calculations of electron- and neutrino-nucleus scattering, carried out within the impulse approximation scheme using realistic nuclear spectral functions.Comparison between electron scattering data and the calculated inclusive cross section off oxygen, at beam energies ranging between 700 and 1200 MeV, show that the Fermi gas model, widely used in the analysis of neutrino oscillation experiments,fails to provide a satisfactory description of the measured cross sections,and inclusion of nuclear dynamics is needed.Comment: 12 pages, 15 figure

    Alpha clustering and weak coupling in the A=90 region

    Full text link
    From the viewpoint of a unified description of cluster structure and scattering in the A=90 region, α\alpha scattering from 89^{89}Y is investigated. α\alpha clustering and weak coupling in 93^{93}Nb is discussed.Comment: 8 pages, 4 figure

    Deformed Base Antisymmetrized Molecular Dynamics and its Application to ^{20}Ne

    Full text link
    A new theoretical framework named as deformed base antisymmetrized molecular dynamics that uses the localized triaxially deformed Gaussian as the single particle wave packet is presented. The model space enables us to describe sufficiently well the deformed mean-field structure as well as the cluster structure and their mixed structure within the same framework. The improvement over the original version of the antisymmetrized molecular dynamics which uses the spherical Gaussian is verified by the application to 20Ne^{20}{\rm Ne} nucleus. The almost pure α+16Og.s\alpha + ^{16}{\rm O_{g.s}} cluster structure of the KπK^\pi=00^- band, the distortion of the cluster structure in the KπK^\pi=01+0^+_1 band and the dominance of the deformed mean-field structure of the KπK^\pi=22^- band are confirmed and their observed properties are reproduced. Especially, the intra-band E2 transition probabilities in KπK^\pi=01+0^+_1 and 22^- bands are reproduced without any effective charge. Since it has been long known that the pure α+16Og.s.\alpha + ^{16}{\rm O}_{g.s.} cluster model underestimates the intra-band E2E2 transitions in the KπK^\pi=01+0^+_1 band by about 30%, we consider that this success is due to the sufficient description of the deformed mean-field structure in addition to the cluster structure by the present framework. From the successful description of 20Ne^{20}{\rm Ne}, we expect that the present framework presents us with a powerful approach for the study of the coexistence and interplay of the mean-field structure and the cluster structure

    Hadron multiplicities in e+e- annihilation with heavy primary quarks

    Get PDF
    The multiple hadron production in the events induced by the heavy primary quarks in e+ee^+e^- annihilation is reconsidered with account of corrected experimental data. New value for the multiplicity in bbˉb\bar{b} events is presented on the basis of pQCD estimates.Comment: 16 pages, 6 figures. Version accepted for publication in EPJ

    Multiple hadron production in e+e- annihilation induced by heavy primary quarks. New analysis

    Full text link
    In this paper we present an analysis of the multiple hadron production induced by primary heavy quarks in e+e- annihilation with the account of most complete and corrected experimental data. In the framework of perturbative QCD, new theoretical bounds on the asymptotically constant differences of the multiplicities in processes with light and heavy quarks are given.Comment: 26 pages, 7 figures, to be published in Particles & Nucle
    corecore