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ABSTRACT: A bent fluorenone-based dipyridyl ligand LA reacts with PdII cations to a solvent-dependent dynamic library of
[PdnL2n] assemblies, constituted by a [Pd3L

A
6] ring and a [Pd4L

A
8] tetrahedron as major components, and a [Pd6L

A
12] octahedron as

minor component. Introduction of backbone steric hindrance in ligand LB allows exclusive formation of the [Pd6L
B
12] octahedron.

Combining equimolar amounts of both ligands results in integrative self-sorting to give an unprecedented [Pd4L
A
4L

B
4] heteroleptic

tetrahedron. Key to the non-statistical assembly outcome is exploiting the structural peculiarity of the [Pd4L8] tetrahedral topology,
where the four lean ligands occupy two doubly bridged edges and the bulky ligands span the four remaining, singly bridged edges.
Hence, the system finds a compromise between the entropic drive to form an assembly smaller than the octahedron and the
enthalpic prohibition of pairing two bulky ligands on the same edge of the triangular ring. The emission of luminescent LA is
maintained in both homoleptic [Pd3L

A
6] and heteroleptic [Pd4L

A
4L

B
4].

Coordination-driven self-assembly provides a powerful tool
to design and synthesize discrete nanostructured objects

with accessible cavities.1,2 The resulting metallo-supramolecu-
lar assemblies are promising candidates for mimicking
functional host systems found in nature, such as enzymes.
The dynamic nature of many transition metal−ligand
interactions, characterized by precise geometry and direction-
ality, combined with a polytopic ligand structure, allow us to
design and self-assemble a plethora of compounds with
different shapes, sizes, and properties. Embedded functions,
depending on either individual building blocks or their
synergistic interaction,3−7 may involve host−guest interac-
tions,8−10 photoswitching,11,12 chirality,13−15 chromophore
effects,16−19 or catalysis,20−23 just to name a few.
Besides the formation of single components, dynamic

systems consisting of several structures with different top-
ologies may be the result of a self-assembly reaction.24−29 So
far, most reported metallo-supramolecular compounds carry
only one type of ligand, limiting the possibility to exploit
applications arising from the implementation of multiple
functionalities. To overcome this restriction, we propose to
increase structural complexity via the non-statistical integration
of a set of different ligands. A first step in this direction is
represented by homoleptic assemblies where the same ligand
occupies two or more non-identical positions. For example,
Lützen reported a [Pd2L4]@[Pd4L8] cage-in-ring assembly.30

Shionoya differentiated metal positions, thus desymmetrizing a
porphyrin ligand.31 Our group investigated the controlled
formation of [Pd2L3X2] bowls (X = solvent, halides) featuring
two different ligand environments.32,33 Recently, structural
complexity has been increased using non-symmetric li-
gands.34−37 A further approach relies on the structural diversity
of [Pd4L8] assemblies with bis-pyridyl ligands, making it
possible to form rings,38 interpenetrated double cages,39,40 or a

tetrahedron-like arrangement, featuring four edges composed
of a single ligand and two doubly bridged edges.5,41−43

Complexity further increases when chemically different
ligands are placed in defined positions, yielding heteroleptic
species. To overcome the formation of a statistical mixture,44

several strategies have been applied, e.g., exploiting hydrogen-
bonding,45 templating guests,46 shape complementarity,47−53

or covalent bridges between ligands.54 Herein, we report a
system where a bis-monodentate, flat ligand LA self-assembles
with PdII to give a series of [PdnL2n] (n = 3, 4, 6) architectures
in a solvent-dependent process. Introduction of steric
congestion into its backbone gives the bulky ligand LB,
allowing us to exclusively form a large [Pd6L12] octahedron. A
similar approach was reported by Severin and Hiraoka based
on clathrochelate metallo-ligands.55,56 We now show that
combining lean ligand LA and bulky derivative LB opens a new
strategy to form unprecedented [Pd4L

A
4L

B
4] heteroleptic

structures. Key to clean, integrative self-sorting is the presence
of two non-equivalent edge types in the [Pd4L8] tetrahedron,
combined with control over steric pressure in the ligand
backbones.
Ligands LA and LB were synthesized by Suzuki cross-

coupling starting from 2,7-dibromo-9-fluorenone and 2,7-
dibromo-9,9-dihexylfluorene, respectively, with 3-pyridinebor-
onic acid pinacol ester (Supporting Information (SI)). Using
9-substituted fluorene-based backbones makes it possible to
obtain non-linear bis-pyridyl ligands, bearing the CO or
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alkyl substituents pointing toward one side of the molecule.
This generates two binding modes: convex (θ ≈ 90°) with
nitrogen donors pointing away from the substituent(s), and
concave (θ ≈ 40°) pointing in the same direction (Scheme
S4). A similar backbone design was reported to lead to Fe-
based helicates and tetrahedra,57−60 as well as knots and
Borromean rings.61

At first, we studied the self-assembly of homoleptic species.
Combination of ligand LA with PdII in a 2:1 ratio led to a
solvent-dependent dynamic library of compounds with differ-
ent nuclearity (Figure 1a). In CD3CN, two major components
are formed, a [Pd3L

A
6] triangular ring and a [Pd4L

A
8]

tetrahedron. After coordination to PdII, 1H NMR signals are
downfield shifted and split into three sets, as clearly observed
for proton HIV, with a 1:1:2 ratio (Figure 1b). NOESY-NMR
allows us to identify two independent sets of signals (SI), while
DOSY-NMR shows the presence of two species in solution,
with hydrodynamic radii of 11.04 and 12.19 Å, respectively
(SI). This is consistent with the formation of a [Pd3L

A
6] ring

and a [Pd4L
A
8] tetrahedron, the latter generating two set of 1H

NMR signals due to two non-equivalent ligand positions.
Support comes from high-resolution ESI-MS analysis, showing

a series of signals for [Pd3L
A
6(BF4)n]

m+ (n = 2−4; m = 4−2)
and [Pd4L

A
8(BF4)n]

m+ (n = 4, 5; m = 4, 3) (Figure 1c).
Interestingly, the signal at m/z = 1336.2 reveals the presence of
[Pd3L

A
6(BF4) 4]

2 + a s ma jor and h igher -nuc lea r
[Pd6L

A
12(BF4)8]

4+ as minor components (Figure 1c, inset).
Self-assembly in DMSO-d6 results in only [Pd3L

A
6] ring

formation, as confirmed by 1H NMR (Figure 1d), DOSY-
NMR (rH = 13.20 Å), and ESI-MS analysis (SI). The
structures for all three [PdnL2n] components have been
determined by single-crystal X-ray diffraction (SCXRD)
analysis (Figure 2). Needle-shaped crystals of the trimetallic

[Pd3L
A
6] were obtained by vapor diffusion of toluene into a

DMSO solution. The compound has the expected triangular
geometry, where PdII metal centers occupy the vertices while
pairs of ligands sit on the edges (Figure 2a). The carbonyl
backbone substituent adopts two positions, one pointing
outside the ring cavity while the other points toward the π-
surface of the neighboring ligand. The distance between the
fluorenone oxygen and the 5-membered ring centroid of LA is

Figure 1. (a) Self-assembly of PdII and LA forms a [PdnL2n] solvent-
dependent library. (b) 1H NMR (CD3CN, 500 MHz) spectra of
[Pd3L

A
6] (triangles)/[Pd4L

A
8] (squares) and LA. (c) ESI-MS

spectrum of [PdnL2n] in CH3CN; inset shows the isotopic patterns
for [Pd3L

A
6(BF4)4]

2+ and [Pd6L
A
12(BF4)8]

4+. (d) 1H NMR (DMSO-
d6, 500 MHz) of [Pd3L

A
6] and LA.

Figure 2. SCXRD structures of (a) [Pd3L
A
6] ring (left), highlighting

the CO−π interaction (right); (b) [Pd4L
A
8] tetrahedron (left),

highlighting edge 1 (red), edge 2 (orange), and the CO−π
interaction (right); (c) [Pd6L

A
12] octahedron (one enantiomer

shown); and (d) [Pd6L
B
12] octahedron. Counterions, solvent

molecules, hydrogen atoms, and disorder are omitted for clarity.
Color code: Pd, metallic blue; N, blue; O, red; C, gray.
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3.07 Å, suggesting the incompatibility of a bulkier backbone
substituent with this structure. Diffusion of ethyl acetate into a
DMF solution yielded single crystals of [Pd4L

A
8], yielding a

tetrahedral structure with PdII centers on the vertices and
ligands bridging the edges (Figure 2b). In this case, LA

occupies two non-equivalent positions: four edges (“edge 1”)
are composed of one ligand, while the two remaining edges
(“edge 2”) accommodate a pair of ligands. In edge 1, the
carbonyl substituent points outside the tetrahedral cavity, with
LA adopting a convex binding mode (θ ≈ 80°). In edge 2, the
carbonyl group of one LA points toward the π-surface of its
neighbor (CO−π-C5 centroid = 3.53 Å), while the other
carbonyl group points inside the cavity, featuring a concave
binding mode (θ ≈ 40°). Finally, diffusion of 1,4-dioxane into
the [PdnL

A
2n] (n = 3, 4, 6) CH3CN solution resulted in single

crystals of [Pd6L
A
12], suitable for synchrotron diffraction

analysis. The compound crystallizes in the R3̅ space group as
a pair of enantiomeric [Pd6L

A
12] octahedra (Figure 2c). PdII

cations occupy the vertices, while the edges feature one ligand
LA each, with all carbonyl groups pointing outside the cavity.
Comparing the three [PdnL

A
2n] structures suggests that only

the octahedron, the sole structure without CO−π
interactions, should be able to accommodate sterically
demanding ligands on all edges.
To explore this possibility, LB was synthesized by replacing

the 9-fluorenone with a 9,9-dihexylfluorene backbone. Self-
assembly of LB with PdII cations in a 2:1 stoichiometry led to
the formation of a single species, identified as a [Pd6L

B
12]

octahedron (Figure 3a). Upon complexation of PdII, the 1H

NMR signals of LB are downfield shifted and slightly
broadened (Figure 3b). DOSY analysis confirmed a single
species in CD3CN (rH = 15.22 Å) and DMSO-d6 (rH = 18.66
Å, SI), while pointing to differences in the solvent shell
dynamics around the heavily alkyl-decorated [Pd6L

B
12] species.

The high nuclearity was confirmed by HR-ESI-MS, where a
series of peaks for [Pd6L

B
12(BF4)n]

m+ (n = 3−6; m = 9−6)
were identified (Figure 3c). Moreover, single crystals were
obtained from vapor diffusion of toluene into a DMSO
solution. The compound crystallizes as an octahedron with a
structure analogous to that of [Pd6L

A
12]. L

B sits on the edges
and coordinates in the convex mode, and all hexyl chains point
outside the cavity (Figure 2d). From these results we inferred
that the steric bulk in the backbones of LB prevents two ligands
from being direct neighbors on the same edge, thus averting
formation of entropically favored homoleptic species [Pd3L6]
or [Pd4L8].
Looking at the [Pd4L

A
8] tetrahedral structure (Figure 2b)

reveals that while edge 2 must fit two ligands, edge 1 can
accommodate a single ligand with a bulkier backbone, adopting
a convex binding mode with substituents pointing outside the
cavity. Based on this assumption, we postulated the formation
of an unprecedented heteroleptic [Pd4L

A
4L

B
4] tetrahedron,

with four LA sitting on edges 1, while ligands LB occupy edges
2. Hence, PdII, LA, and LB were mixed in a 1:1:1 ratio in
DMSO-d6 at 70 °C for 1 h, indeed resulting in the exclusive
formation of a [Pd4L

A
4L

B
4] heteroleptic tetrahedron (Figure

4b). 1H NMR signals show downfield shifting, without signs of
any homoleptic assemblies (Figure 4c). The presence of both
LA and LB within the same structure is supported by NOESY-
NMR, showing a number of cross-signals, e.g., between Hb and
HI (SI). DOSY-NMR clearly shows a single species (rH =
15.11 Å), bigger than [Pd3L

A
6], but smaller compared to

[Pd6L
B
12] in the same solvent (Figure S36). Furthermore, in

the ES I -MS spec t rum , a s e r i e s o f peak s fo r
[Pd4L

A
4L

B
4(BF4)n]

m+ (n = 1−5; m = 7−3) were identified
(Figure 4d). Due to the dynamic nature of the metallo-
supramolecular system, the same result was obtained in the
fashion of a “cage-to-cage transformation” when two equimolar
solutions of [Pd3L

A
6] and [Pd6L

B
12] were mixed (Figure S33).

Despite a longer reaction time (Figure S34) than starting from
free ligands plus PdII, in agreement with our previous
findings,49 this proves that [Pd4L

A
4L

B
4] is a thermodynamic

product.
Structural analysis of single crystals, from benzene vapor

diffusion into DMSO, ultimately proved the formation of a
[Pd4L

A
4L

B
4] heteroleptic tetrahedron (Figure 4a). To the best

of our knowledge, this is the first example of such a
[M4L

A
4L

B
4] heteroleptic assembly topology. As postulated,

four ligands LA are accommodated on edges 2, with the CO
group either pointing inside the cavity or facing the π-surface
of neighboring LA (CO−π-C5 centroid = 3.38 Å, Figure 4a).
In addition, four ligands LB are sitting on edges 1, adopting a
convex binding mode with hexyl chains pointing outside the
cavity (Figure 4a, purple backbone).
Next, we investigated guest binding of one aliphatic and two

aromatic bis-sulfonates (Scheme S5) with [Pd3L
A
6], [Pd6L

B
12]

and [Pd4L
A
4L

B
4] in DMSO-d6. In all cases, 1H NMR titrations

show interaction of the guests with the cage’s inner cavity,
indicated by a shift of inward-pointing protons (SI). Signal
broadening and onset of precipitation prevented us from
determining association constants. ESI-MS analysis, however,
suggests that the maximal number of hosted guests is

Figure 3. (a) Self-assembly of PdII and LB to form [Pd6L
B
12]. (b)

1H
NMR (DMSO-d6, 500 MHz) spectra of [Pd6L

B
12] and LB. (c) ESI-

MS spectrum of [Pd6L
B
12] with isotopic pattern of [Pd6L

B
12(BF4)3]

9+

shown in the inset.
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controlled by the assembly size. While for [Pd3L
A
6] we only

observed interaction with one guest, for tetrahedra [Pd4L
A
8]

and [Pd4L
A
4L

B
4] binding of two guests was detected, and large

octahedron [Pd6L
B
12] was even found to bind up to three guest

molecules (SI).
Finally, we investigated the photophysical properties of the

systems (Figure 5). In DMSO, LA shows an emission band
centered at 555 nm that is blue-shifted to 532 nm upon PdII

complexation in either homoleptic [Pd3L
A
6] or heteroleptic

[Pd4L
A
4L

B
4]. While this indicates that the emissive properties

of ligand LA are retained in the heteroleptic tetrahedron, our
platform allows to introduce additional functionality through
modification of LB. It is worth noting that in Pd-mediated
assemblies luminescence quenching is frequently observed,15,39

and only few examples of emissive cages have been reported so
far.18,62−65

To conclude, we report a new strategy for the non-statistical,
integrative self-assembly of a previously unreported
[M4L

A
4L

B
4] heteroleptic cage topology. Key factors are the

use of bis-monodentate ligands, able to adopt a concave or
convex binding mode, the precise introduction of backbone
steric hindrance, and a balance between the entropic tendency
to form small assemblies and the enthalpic disadvantage to pair
bulky substituents on a single edge. The preservation of ligand
emission properties in the Pd-mediated assemblies opens
potential toward application as multifunctional devices and
materials in fields such chiroptical sensing, donor−acceptor
systems, and photoredox catalysis.
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A
4L

B
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