77 research outputs found

    The Role of Teachers in the Development of Play Using Grasses and Flowers in a Kindergarten Class for 4-year-olds

    Get PDF
     本論は,幼稚園4歳児学級における草花を使った遊びにおいて,教師の役割を整理し,考察するものである。幼児教育では,遊びの展開に伴って,調和的で多様な学びが深化・発展し,遊びや学びは,幼児主体で偶発的に生じているように見える。しかし,遊びの展開や学びの背景には,「幼児の姿を予想した環境構成」「遊び方の変化に合わせた物的環境の整備」「遊びの発展への架け橋」といった教師の役割が見出された。This paper aims to organize and examine the role of teachers in the play using grasses and flowers in a kindergarten class for 4-year-olds. In early childhood education, harmonious and diverse learning deepens and develops alongside the development of play, with play and learning seemingly occurring spontaneously and child-directed. However, the roles of teachers, such as “environmental constitution anticipating the child's presence,” “maintenance of the physical environment in accordance with changes in play,” and “bridging to the development of play,” were identified as underlying the background of the development of play and learning

    The fungal metabolite (+)-terrein abrogates osteoclast differentiation via suppression of the RANKL signaling pathway through NFATc1

    Get PDF
    Pathophysiological bone resorption is commonly associated with periodontal disease and involves the excessive resorption of bone matrix by activated osteoclasts. Receptor activator of nuclear factor (NF)-κB ligand (RANKL) signaling pathways have been proposed as targets for inhibiting osteoclast differentiation and bone resorption. The fungal secondary metabolite (+)-terrein is a natural compound derived from Aspergillus terreus that has previously shown anti-interleukin-6 properties related to inflammatory bone resorption. However, its effects and molecular mechanism of action on osteoclastogenesis and bone resorption remain unclear. In the present study, we showed that 10 µM synthetic (+)-terrein inhibited RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner and without cytotoxicity. RANKL-induced messenger RNA expression of osteoclast-specific markers including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), the master regulator of osteoclastogenesis, cathepsin K, tartrate-resistant acid phosphatase (Trap) was completely inhibited by synthetic (+)-terrein treatment. Furthermore, synthetic (+)-terrein decreased RANKL-induced NFATc1 protein expression. This study revealed that synthetic (+)-terrein attenuated osteoclast formation and bone resorption by mediating RANKL signaling pathways, especially NFATc1, and indicated the potential effect of (+)-terrein on inflammatory bone resorption including periodontal disease

    The Fungal Metabolite (+)-Terrein Abrogates Ovariectomy-Induced Bone Loss and Receptor Activator of Nuclear Factor-kappa B Ligand-Induced Osteoclastogenesis by Suppressing Protein Kinase-C alpha/beta II Phosphorylation

    Get PDF
    Osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. Severe bone loss due to osteoporosis triggers pathological fractures and consequently decreases the daily life activity and quality of life. Therefore, prevention of osteoporosis has become an important issue to be addressed. We have reported that the fungal secondary metabolite (+)-terrein (TER), a natural compound derived from Aspergillus terreus, has shown receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast differentiation by suppressing nuclear factor of activated T-cell 1 (NFATc1) expression, a master regulator of osteoclastogenesis. TER has been shown to possess extensive biological and pharmacological benefits; however, its effects on bone metabolism remain unclear. In this study, we investigated the effects of TER on the femoral bone metabolism using a mouse-ovariectomized osteoporosis model (OVX mice) and then on RANKL signal transduction using mouse bone marrow macrophages (mBMMs). In vivo administration of TER significantly improved bone density, bone mass, and trabecular number in OVX mice (p < 0.01). In addition, TER suppressed TRAP and cathepsin-K expression in the tissue sections of OVX mice (p < 0.01). In an in vitro study, TER suppressed RANKL-induced phosphorylation of PKC alpha/beta II, which is involved in the expression of NFATc1 (p < 0.05). The PKC inhibitor, GF109203X, also inhibited RANKL-induced osteoclastogenesis in mBMMs as well as TER. In addition, TER suppressed the expression of osteoclastogenesis-related genes, such as Ocstamp, Dcstamp, Calcr, Atp6v0d2, Oscar, and Itgb3 (p < 0.01). These results provide promising evidence for the potential therapeutic application of TER as a novel treatment compound against osteoporosis

    Androgen’s effects in female

    Get PDF
    The metabolic effects of androgens and their underlying mechanisms in females have been revealed by recent studies. An excess of androgens can have adverse effects on feeding behavior and metabolic functions and induce metabolic disorders / diseases, such as obesity, insulin resistance, and diabetes, in women and experimental animals of reproductive age. Interestingly, these effects of androgens are not observed in ovariectomized animals, indicating that their effects might be dependent on the estrogen milieu. Central and peripheral mechanisms, such as alterations in the activity of hypothalamic factors, reductions in energy expenditure, skeletal muscle insulin resistance, and β-cell dysfunction, might be related to these androgens’ effects

    Use of Human Senses as Sensors

    Get PDF
    This paper is an overview of our recent findings obtained by the use of human senses as sensors, suggesting that human senses might be indispensable sensors, not only for practical uses but also for gaining a deeper understanding of humans. From this point of view, two kinds of studies, both based on semantic responses of participants, deserve emphasis. One study assessed the efficacy of the photocatalytic elimination of stains or bio-aerosols from an air environment using TiO2 as well as the photocatalytic deodorizing efficacy of a TiO2-type deodorizer; the other study evaluated the changes in perception of a given aroma while inhaling the fragrance of essential oils. In the latter study, we employed a sensory test for evaluating changes in perception of a given aroma. Sensory tests were conducted twice, when participants were undergoing the Kraepelin mental performance test (mental arithmetic) or an auditory task (listening to environmental natural sounds), once before the task (pre-task) and once after the task (post-task). The perception of fragrance was assessed by 13 contrasting pairs of adjectives as a function of the task assigned to participants. The obtained findings illustrate subtle nuances regarding how essential oils manifest their potency and how olfactory discrimination and responses occur in humans

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    COVID-19 vaccine effectiveness against severe COVID-19 requiring oxygen therapy, invasive mechanical ventilation, and death in Japan: A multicenter case-control study (MOTIVATE study).

    Get PDF
    INTRODUCTION: Since the SARS-CoV-2 Omicron variant became dominant, assessing COVID-19 vaccine effectiveness (VE) against severe disease using hospitalization as an outcome became more challenging due to incidental infections via admission screening and variable admission criteria, resulting in a wide range of estimates. To address this, the World Health Organization (WHO) guidance recommends the use of outcomes that are more specific to severe pneumonia such as oxygen use and mechanical ventilation. METHODS: A case-control study was conducted in 24 hospitals in Japan for the Delta-dominant period (August-November 2021; "Delta") and early Omicron (BA.1/BA.2)-dominant period (January-June 2022; "Omicron"). Detailed chart review/interviews were conducted in January-May 2023. VE was measured using various outcomes including disease requiring oxygen therapy, disease requiring invasive mechanical ventilation (IMV), death, outcome restricting to "true" severe COVID-19 (where oxygen requirement is due to COVID-19 rather than another condition(s)), and progression from oxygen use to IMV or death among COVID-19 patients. RESULTS: The analysis included 2125 individuals with respiratory failure (1608 cases [75.7%]; 99.2% of vaccinees received mRNA vaccines). During Delta, 2 doses provided high protection for up to 6 months (oxygen requirement: 95.2% [95% CI:88.7-98.0%] [restricted to "true" severe COVID-19: 95.5% {89.3-98.1%}]; IMV: 99.6% [97.3-99.9%]; fatal: 98.6% [92.3-99.7%]). During Omicron, 3 doses provided high protection for up to 6 months (oxygen requirement: 85.5% [68.8-93.3%] ["true" severe COVID-19: 88.1% {73.6-94.7%}]; IMV: 97.9% [85.9-99.7%]; fatal: 99.6% [95.2-99.97]). There was a trend towards higher VE for more severe and specific outcomes. CONCLUSION: Multiple outcomes pointed towards high protection of 2 doses during Delta and 3 doses during Omicron. These results demonstrate the importance of using severe and specific outcomes to accurately measure VE against severe COVID-19, as recommended in WHO guidance in settings of intense transmission as seen during Omicron

    Structure-activity relationship of imidazothiadiazole analogs for the binding to the ecdysone receptor of insect cells.

    Get PDF
    Diacylhydrazines are the first non-steroidal ecdysone agonists, and five compounds are used as insecticides in agriculture. After the discovery of diacylhydrazine-type compounds, numerous non-steroidal structures were reported as ecdysone agonists. Among various ecdysone agonists, imidazothiadiazoles are reported to be very potent in vitro; however, the experimental detail for the structure identification and bioassays are not stated in the paper (Holmwood and Schindler, Bioorg. Med. Chem. 17, 4064-4070, 2009). In our present study, we synthesized 18 imidazothiadiazole-type compounds and confirmed the chemical structures by spectrometric analyses. The binding activity of the synthesized compounds to the ecdysone receptor was evaluated in terms of the concentration required for 50% inhibition of [(3)H]ponasterone A incorporation [IC50 (M)] into lepidopteran (Sf-9), coleopteran (BCRL-Lepd-SL1), and dipteran (NIAS-AeAl2) cells. 6-(2-Chlorophenyl)-2-(trifluoromethyl)imidazo[2, 1-b] [1, 3, 4]-thiadiazol-5-yl)acrylamide analogs with CONHR (secondary amide) were very potent against Sf-9 cells, but further alkylation (tertiary amide: CONR2) decreased the activity dramatically. Additionally, a primary amide analog (CONH2) was inactive. The activity also decreased 150-fold by the saturation of olefin region of the acrylamide moiety. In addition, various substituents were introduced at the 2-position of the imidazothiadiazole ring to disclose the physicochemical properties of the substituents which are important for receptor binding. The activity increased by 7500-fold with the introduction of the CF2CF2CF3 group compared to the unsubstituted compound against Sf-9 cells. Quantitative structure-activity relationship analysis for these substituents indicated that hydrophobic and electron-withdrawing groups were favorable for binding. Some of the compounds with strong receptor binding activity showed good larvicidal activity against Spodoptera litura. In contrast, the binding affinity of imidazothiadiazole analogs was low or not observed against dipteran and coleopteran cells
    corecore