702 research outputs found

    Topics of Analytical and Computational Methods in Tunnel Engineering

    Get PDF
    In this chapter, a selection of tunneling topics is presented, following the evolution of methods and tools from analytical to computational era. After an introductory discussion of the importance of elasticity and plasticity in tunneling, some practical topics are presented as paradigms to show the successful application of them in achieving a solution. The circular and horseshoe tunnel sections served as the basis of the elastic analysis of deep tunnels. Practical aspects such as influence zone and elastic convergences in both cases are examined. In the case of circular tunnels, the estimation of plastic zone formation is discussed for a selection of strength criteria. After a detailed discussion of the influence of surface proximity, the elastic and plastic analysis of shallow tunnels is examined in some detail. The presentation is completed by a short presentation of computational methods. An overview of recent developments and a classification of the methods are presented, and then some problems for the case of anisotropic rocks have been presented using finite element method (FEM). The last topic is the application of artificial intelligence (AI) tools in interpreting data and in estimating the relative importance of parameters involved in the problem of tunneling-induced surface settlements. In the conclusions a short discussion of the main topics presented follows

    Introductory Chapter: A Short Survey of Landmarks

    Get PDF

    Eddy current effects in plain and hollow cylinders spinning inside homogeneous magnetic fields: Application to magnetic resonance

    Get PDF
    International audienceWe present a thorough analysis of eddy currents that develop in a rectangular cross section toroid rotating in a uniform magnetic field. The slow rotation regime is assumed. Compact expressions for the current density, the total dissipated power, and the braking torque are given. Examination of the topology of current lines reveals that depending upon the relative dimensions of the side and length of the toroid two different regimes exist. The conditions of existence of the two regimes are analytically established. In view of nuclear magnetic resonance (NMR) applications, we derive the angular variation of the magnetic field created by eddy currents and lay down the formalism necessary for calculating the effect of this field on the NMR spectra of the conductor itself or of a sample co-rotating with the conductor, a situation encountered when dealing with rotating detectors. Examples of calculations for cases of practical interest are presented. The theory is confronted with available data, and we give guidelines for the design of optimized rotating micro-coils

    SAJaS: enabling JADE-based simulations

    Get PDF
    Multi-agent systems (MAS) are widely acknowledged as an appropriate modelling paradigm for distributed and decentralized systems, where a (potentially large) number of agents interact in non-trivial ways. Such interactions are often modelled defining high-level interaction protocols. Open MAS typically benefit from a number of infrastructural components that enable agents to discover their peers at run-time. On the other hand, multi-agent-based simulations (MABS) focus on applying MAS to model complex social systems, typically involving a large agent population. Several MAS development frameworks exist, but they are often not appropriate for MABS; and several MABS frameworks exist, albeit sharing little with the former. While open agent-based applications benefit from adopting development and interaction standards, such as those proposed by FIPA, MABS frameworks typically do not support them. In this paper, a proposal to bridge the gap between MAS simulation and development is presented, including two components. The Simple API for JADE-based Simulations (SAJaS) enhances MABS frameworks with JADE-based features. While empowering MABS modellers with modelling concepts offered by JADE, SAJaS also promotes a quicker development of simulation models for JADE programmers. In fact, the same implementation can, with minor changes, be used as a large scale simulation or as a distributed JADE system. In its current version, SAJaS is used in tandem with the Repast simulation framework. The second component of our proposal consists of a MAS Simulation to Development (MASSim2Dev) tool, which allows the automatic conversion of a SAJaS-based simulation into a JADE MAS, and vice-versa. SAJaS provides, for certain kinds of applications, increased simulation performance. Validation tests demonstrate significant performance gains in using SAJaS with Repast when compared with JADE, and show that the usage of MASSim2Dev preserves the original functionality of the system. © Springer-Verlag Berlin Heidelberg 2015
    corecore