31 research outputs found

    Beneficial effects of fermented vegetal beverages on human gastrointestinal microbial ecosystem in a simulator

    Get PDF
    The aim of this study was to evaluate the effects of four beverage formulations (prebiotic - fructooligosaccharide, probiotic - Lactobacillus casei Lc-01, synbiotic - fructooligosaccharide and L. casei Lc-01 and placebo) based on aqueous extracts of soy and quinoa, towards the human intestinal microbiota using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME (R)), a dynamic model of the human gut. To monitor the effects on microbial community composition, plate counts on specific growth media and a PCR-DGGE analysis were performed on samples from all colon compartments - ascending, transverse and descending. To verify the effects on microbial metabolism, we analyzed the ammonium and short chain fatty acids (SCFAs) concentrations. The synbiotic beverage showed the best microbiological results in the ascending colon compartment, stimulating the growth of Lactobacillus spp. and Bifidobacterium spp., and reducing Clostridium spp., Bacteroides spp., enterobacteria and Enterococcus spp. populations in this compartment. A larger reduction (p < 0.05) of ammonia ions in the ascending colon was observed during the synbiotic beverage treatment. No statistical difference was observed in SCFA production among the treatments and the basal period. Plate count and DGGE analysis showed the survival of L. casei Lc-01 in the colon. DGGE analysis also showed higher richness and diversity of the Lactobacillus spp. community during the treatment with synbiotic beverage, with higher accentuation in the ascending colon. (C) 2014 Elsevier Ltd. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production

    Get PDF
    AbstractThis study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000mgL−1). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30°C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8h. The reactor R1 operating with a HRT of 2h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25molH2mol−1 glucose with 1.3mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter

    DEGRADAÇÃO ANAERÓBIA DE FENOL EM REATORES EM BATELADA SOB CONDIÇÕES FERMENTATIVAS

    Get PDF
    The goal of this research was to assess phenol degradation on different nutritional conditions. The reactors were carried out in a batch fed with phenol, sulfate and yeast extract, at 30+1oC, under 150 rpm agitation. The reactors fed with phenol (240 mg.l-1) and yeast extract obtained 100% degradation efficiency in 11 days. The reactors fed with phenol (234 mg.l-1), sulfate (162.5 mg.l-1) and yeast extract; and phenol (256 mg.l-1), sulfate (500 mg.l-1) and yeast extract obtained degradation efficiency of 98.8% and 99.3%, respectively, in 17 days. Such efficiencies were obtained by the addition of yeast extract in the reactors, in the beginning of the essays. The analyzes of Molecular Biology had confirmed that the present bacterial community in inoculum remained in the reactors, although to have been operated under distinct nutritional conditions. These conditions had propitiated the permanence of bacterial populations capable to degrade phenol; to leaven phenol and to use sulfate as aceptor electron end.O objetivo dessa pesquisa foi avaliar a potencialidade do inóculo na degradação de fenol sob diferentes condições nutricionais. Os reatores foram alimentados em batelada com fenol, sulfato e extrato de levedura, a 30+1oC, sob agitação de 150 rpm. Os resultados das eficiências de remoção de fenol demonstraram que não houve diferença significativa entre as condições impostas no experimento. As análises do DGGE confirmaram que a comunidade microbiana presente no inóculo permaneceu nos reatores, apesar de terem sido operados sob condições distintas. Essas condições propiciaram a permanência de populações microbianas capazes de degradar fenol

    Performance and composition of bacterial communities in anaerobic fluidized bed reactors for hydrogen production: Effects of organic loading rate and alkalinity

    Get PDF
    This study evaluated the effects of the organic loading rate (OLR) and pH buffer addition on hydrogen production in two anaerobic fluidized bed reactors (AFBRs) operated simultaneously. The AFBRs were fed with glucose, and expanded clay was used as support material. The reactors were operated at a temperature of 30 degrees C, without the addition of a buffer (AFBR1) and with the addition of a pH buffer (AFBR2, sodium bicarbonate) for OLRs ranging from 19.0 to 140.6 kg COD m(-3) d(-1) (COD: chemical oxygen demand). The maximum hydrogen yields for AFBR1 and AFBR2 were 2.45 and 1.90 mol H-2 mol(-1) glucose (OLR of 84.3 kg COD m(-3) d(-1)), respectively. The highest hydrogen production rates were 0.95 and 0.76 L h(-1) L-1 for AFBR1 and AFBR2 (OLR of 140.6 kg COD m(-3) d(-1)), respectively. The operating conditions in AFBR1 favored the presence of such bacteria as Clostridium, while the bacteria in AFBR2 included Clostridium, Enterobacter, Klebsiella, Veillonellaceae, Chryseobacterium, Sporolactobacillus, and Burkholderiaceae. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.CNPqCNPqCAPESCAPESFAPESPFAPES

    Comparison of the microbial communities structure in systems of activated sludge modified for enhanced biological phosphorus removal by denaturing gradient gel electrophoresis technique (DGGE)

    No full text
    O excesso de nutrientes como nitrogênio e fósforo em efluentes de estação de tratamento de esgoto sanitário pode provocar a eutrofização nos corpos d\'aguas receptoras. Esse processo gera efeitos negativos para a engenharia sanitária, dependendo do grau de qualidade e do uso de água requeridos. Para o abastecimento público, são exigidos métodos e processos de tratamentos avançados, quando a fonte hídrica está eutrofizada. Neste sentido, sistemas aeróbios de lodos ativados passaram a se destacar também como removedores de nutrientes por processos biológicos, após sofrerem algumas modificações operacionais. Um meio para otimizar o processo de remoção biológica do fósforo em excesso (EBPR) é promover condições ideais para o crescimento dos organismos acumuladores de fósforo. Esse trabalho teve como objetivo avaliar uma estação piloto de lodos ativados modificados, para a remoção de fósforo em excesso, utilizados no tratamento de esgoto sanitário, localizada na ETE da cidade de Tóquio - Japão. Essa estação piloto constituía-se de três sistemas de reação (1, 2 e 3), sendo que cada sistema era compartimentado e submetido às condições anaeróbia, anóxica e aeróbia. A avaliação dos três sistemas de reação, consistiu na verificação do desempenho deles com relação a DBO e fósforo e monitoramento da estrutura da comunidade microbiana, pela técnica da eletroforese em gel de gradiente desnaturante (DGGE). O desempenho em relação a DBOs (mg/L) nos três sistemas de reação, sempre foi superior a 90% e a eficiência da remoção do fósforo (%) na forma de fosfato (P-PO4 - mg/L) foi superior, em geral, a 70%, considerando os valores de entrada das alimentações e saída no último compartimento dos três sistemas de reação. Verificou-se que a estrutura da comunidade microbiana apresentou uma grande diversidade, devido aos números de bandas padrões encontradas nas amostras analisadas. Observou-se também uma grande similaridade ) da estrutura da comunidade microbiana nos sistemas estudados, possivelmente, relacionada ao mesmo afluente (esgoto sanitário) e ao mesmo tipo de recirculação interna e do lodo. As mudanças das estruturas das comunidades microbianas foram pequenas, diante das mudanças temporais e operacionais. No entanto, observou-se que o sistema foi menos eficiente (parâmetros de desempenho), frente a essas mudanças, o que pode estar mais relacionado à redução das atividades dos microrganismos do que com as estruturas microbianas.The excess of nutrients such as nitrogen and phosphate in effluents of treatment plants for sanitary sewage can cause eutrophication in the receiving body of water. Given that process generates negative effects for the sanitary engineering depending on the degree of the quality and of the requested use of water. For the public provisioning, methods and processes of advanced treatments are demanded, when the water body is eutrophic. In this sense, aerobic systems of activated sludge have been expanded also to the processes of biological removal of nutrients after some operational modifications. By means of the optimization process of enhanced biological phosphorus removal (EBPR) will promote ideal conditions for the growth of polyphosphate accumulating organisms. This work had as its objective to evaluate a pilot station modified activated sludge, used for the treatment of sanitary sewage, but specifically for the enhanced phosphorus removal, located in the ETE of the city of Tokyo - Japan. These pilot station was constituted of three reaction systems (1, 2 and 3), and each system were composed of compartments and were submitted to anaerobic, anoxic and aerobic conditions. The evaluation of the three reaction systems, consisted of the verification of the performance of the systems with regard to BOD and phosphate which were monitored through microbial community\'s structure, for the biological phosphorus removal technique (DGGE). The performance in relation to the BODS (mg/L) in the three reaction systems was always above 90% and the efficiency of the removal of phosphorus (%) in the form of phosphate (P-PO4 - mg/L) was in general better than 70%, considering the values of influent and effluent from the last compartment of the three reaction systems. It was verified that the microbial community structure presented a great diversity, due to the standard numbers of bands found in the analyzed samples. A great similarity of the microbial community structure was observed in the studied systems, possibly being related to the same influent (domestic sewage) and to the same type of intern recirculation and of the sludge. The changes of the microbial communities structures were small, before the temporary and operational changes. However, it was observed that the system was less effiecient (performance parametrs) front to those changes, what can be more related the reduction of the activities of the microorganisms than with the microbial structures

    Comparison of the microbial communities structure in systems of activated sludge modified for enhanced biological phosphorus removal by denaturing gradient gel electrophoresis technique (DGGE)

    No full text
    O excesso de nutrientes como nitrogênio e fósforo em efluentes de estação de tratamento de esgoto sanitário pode provocar a eutrofização nos corpos d\'aguas receptoras. Esse processo gera efeitos negativos para a engenharia sanitária, dependendo do grau de qualidade e do uso de água requeridos. Para o abastecimento público, são exigidos métodos e processos de tratamentos avançados, quando a fonte hídrica está eutrofizada. Neste sentido, sistemas aeróbios de lodos ativados passaram a se destacar também como removedores de nutrientes por processos biológicos, após sofrerem algumas modificações operacionais. Um meio para otimizar o processo de remoção biológica do fósforo em excesso (EBPR) é promover condições ideais para o crescimento dos organismos acumuladores de fósforo. Esse trabalho teve como objetivo avaliar uma estação piloto de lodos ativados modificados, para a remoção de fósforo em excesso, utilizados no tratamento de esgoto sanitário, localizada na ETE da cidade de Tóquio - Japão. Essa estação piloto constituía-se de três sistemas de reação (1, 2 e 3), sendo que cada sistema era compartimentado e submetido às condições anaeróbia, anóxica e aeróbia. A avaliação dos três sistemas de reação, consistiu na verificação do desempenho deles com relação a DBO e fósforo e monitoramento da estrutura da comunidade microbiana, pela técnica da eletroforese em gel de gradiente desnaturante (DGGE). O desempenho em relação a DBOs (mg/L) nos três sistemas de reação, sempre foi superior a 90% e a eficiência da remoção do fósforo (%) na forma de fosfato (P-PO4 - mg/L) foi superior, em geral, a 70%, considerando os valores de entrada das alimentações e saída no último compartimento dos três sistemas de reação. Verificou-se que a estrutura da comunidade microbiana apresentou uma grande diversidade, devido aos números de bandas padrões encontradas nas amostras analisadas. Observou-se também uma grande similaridade ) da estrutura da comunidade microbiana nos sistemas estudados, possivelmente, relacionada ao mesmo afluente (esgoto sanitário) e ao mesmo tipo de recirculação interna e do lodo. As mudanças das estruturas das comunidades microbianas foram pequenas, diante das mudanças temporais e operacionais. No entanto, observou-se que o sistema foi menos eficiente (parâmetros de desempenho), frente a essas mudanças, o que pode estar mais relacionado à redução das atividades dos microrganismos do que com as estruturas microbianas.The excess of nutrients such as nitrogen and phosphate in effluents of treatment plants for sanitary sewage can cause eutrophication in the receiving body of water. Given that process generates negative effects for the sanitary engineering depending on the degree of the quality and of the requested use of water. For the public provisioning, methods and processes of advanced treatments are demanded, when the water body is eutrophic. In this sense, aerobic systems of activated sludge have been expanded also to the processes of biological removal of nutrients after some operational modifications. By means of the optimization process of enhanced biological phosphorus removal (EBPR) will promote ideal conditions for the growth of polyphosphate accumulating organisms. This work had as its objective to evaluate a pilot station modified activated sludge, used for the treatment of sanitary sewage, but specifically for the enhanced phosphorus removal, located in the ETE of the city of Tokyo - Japan. These pilot station was constituted of three reaction systems (1, 2 and 3), and each system were composed of compartments and were submitted to anaerobic, anoxic and aerobic conditions. The evaluation of the three reaction systems, consisted of the verification of the performance of the systems with regard to BOD and phosphate which were monitored through microbial community\'s structure, for the biological phosphorus removal technique (DGGE). The performance in relation to the BODS (mg/L) in the three reaction systems was always above 90% and the efficiency of the removal of phosphorus (%) in the form of phosphate (P-PO4 - mg/L) was in general better than 70%, considering the values of influent and effluent from the last compartment of the three reaction systems. It was verified that the microbial community structure presented a great diversity, due to the standard numbers of bands found in the analyzed samples. A great similarity of the microbial community structure was observed in the studied systems, possibly being related to the same influent (domestic sewage) and to the same type of intern recirculation and of the sludge. The changes of the microbial communities structures were small, before the temporary and operational changes. However, it was observed that the system was less effiecient (performance parametrs) front to those changes, what can be more related the reduction of the activities of the microorganisms than with the microbial structures

    Tratamento de esgoto sanitário utilizando reatores anaeróbios operados em bateladas sequenciais (escala piloto)

    No full text
    The performances of two anaerobic sequencing batch reactors (1.2 m 3) containing biomass immobilized in inert support and as granular sludge in the treatment of domestic sewage from the Campus of São Carlos-University of São Paulo were evaluated. The experimental phase lasted seventy days. During this period, the reactors presented quite similar performances in respect to COD and total suspended solids removal, achieving average efficiencies of approximately 60% and 75%, respectively. The analysis using molecular biology techniques on biomass samples taken at 35 th and 70 th showed differences in the bacterial community in the reactors indicating that the type of biomass immobilization selected the populations differently. A higher similarity was found for the Archaea domain probably because these microorganisms utilize specific substrates formed at the end of the anaerobic process

    Influence of support material on the immobilization of biomass for the degradation of linear alkylbenzene sulfonate in anaerobic reactors

    No full text
    Two horizontal-flow anaerobic immobilized biomass reactors (HAIB) were used to study the degradation of the LAS surfactant: one filled with charcoal (HAIB1) and the other with a mixed bed of expanded clay and polyurethane foam (HAIB2). The reactors were fed with synthetic substrate supplemented with 14 mg l(-1) of LAS, kept at 30 +/- 2 degrees C and operated with a hydraulic retention time (HRT) of 12 h. The surfactant was quantified by HPLC. Spatial variation analyses were done to quantify organic matter and LAS consumption along the reactor length. The presence of the surfactant in the load did not affect the removal of organic matter (COD), which was close to 90% in both reactors for an influent COD of 550 ring l(-1). The results of a mass balance indicated that 28% of all LAS added to HAIB1 was removed by degradation. HAIB2 presented 27% degradation. Molecular biology techniques revealed microorgan isms belonging the uncultured Holophaga sp., uncultured delta Proteobacterium, uncultured Verrucomicrobium sp., Bacteroides sp. and uncultured gamma Proteobacterium sp. The reactor with biomass immobilized on charcoal presented lower adsorption and a higher kinetic degradation coefficient. So, it was the most suitable support for LAS anaerobic treatment. (c) 2008 Elsevier Ltd. All rights reserved

    Microbial characterization and removal of anionic surfactant in an expanded granular sludge bed reactor

    Get PDF
    This study evaluated linear alkylbenzene sulfonate removal in an expanded granular sludge bed reactor with hydraulic retention times of 26 h and 32 h. Sludge bed and separator phase biomass were phylogenetically characterized (sequencing 16S rRNA) and quantified (most probable number) to determine the total anaerobic bacteria and methanogenic Archaea. The reactor was fed with a mineral medium supplemented with 14 mg l(-1) LAS, ethanol and methanol. The stage I-32 h consisted of biomass adaptation (without LAS influent) until reactor stability was achieved (COD removal &gt;97%). In stage II-32 h, LAS removal was 74% due to factors such as dilution, degradation and adsorption. Higher HRT values increased the LAS removal (stage III: 26 h - 48% and stage IV: 32 h - 64%), probably due to increased contact time between the biomass and LAS. The clone libraries were different between samples from the sludge bed (Synergitetes and Proteobacteria) and the separator phase (Firmicutes and Proteobacteria) biomass. (C) 2011 Elsevier Ltd. All rights reserved.FAPESPFapespCNPqCNP
    corecore