143 research outputs found

    Human scalp potentials reflect a mixture of decision-related signals during perceptual choices

    Get PDF
    Single-unit animal studies have consistently reported decision-related activity mirroring a process of temporal accumulation of sensory evidence to a fixed internal decision boundary. To date, our understanding of how response patterns seen in single-unit data manifest themselves at the macroscopic level of brain activity obtained from human neuroimaging data remains limited. Here, we use single-trial analysis of human electroencephalography data to show that population responses on the scalp can capture choice-predictive activity that builds up gradually over time with a rate proportional to the amount of sensory evidence, consistent with the properties of a drift-diffusion-like process as characterized by computational modeling. Interestingly, at time of choice, scalp potentials continue to appear parametrically modulated by the amount of sensory evidence rather than converging to a fixed decision boundary as predicted by our model. We show that trial-to-trial fluctuations in these response-locked signals exert independent leverage on behavior compared with the rate of evidence accumulation earlier in the trial. These results suggest that in addition to accumulator signals, population responses on the scalp reflect the influence of other decision-related signals that continue to covary with the amount of evidence at time of choice

    Circular Clustering with Polar Coordinate Reconstruction

    Full text link
    There is a growing interest in characterizing circular data found in biological systems. Such data are wide ranging and varied, from signal phase in neural recordings to nucleotide sequences in round genomes. Traditional clustering algorithms are often inadequate due to their limited ability to distinguish differences in the periodic component. Current clustering schemes that work in a polar coordinate system have limitations, such as being only angle-focused or lacking generality. To overcome these limitations, we propose a new analysis framework that utilizes projections onto a cylindrical coordinate system to better represent objects in a polar coordinate system. Using the mathematical properties of circular data, we show our approach always finds the correct clustering result within the reconstructed dataset, given sufficient periodic repetitions of the data. Our approach is generally applicable and adaptable and can be incorporated into most state-of-the-art clustering algorithms. We demonstrate on synthetic and real data that our method generates more appropriate and consistent clustering results compared to standard methods. In summary, our proposed analysis framework overcomes the limitations of existing polar coordinate-based clustering methods and provides a more accurate and efficient way to cluster circular data.Comment: Manuscript is under review in IEEE Transactions on Computational Biology and Bioinformatics. Copyright holder is credited to IEE

    Single-trial analysis of EEG during rapid visual discrimination: enabling cortically-coupled computer vision

    Get PDF
    We describe our work using linear discrimination of multi-channel electroencephalography for single-trial detection of neural signatures of visual recognition events. We demonstrate the approach as a methodology for relating neural variability to response variability, describing studies for response accuracy and response latency during visual target detection. We then show how the approach can be utilized to construct a novel type of brain-computer interface, which we term cortically-coupled computer vision. In this application, a large database of images is triaged using the detected neural signatures. We show how ‘corticaltriaging’ improves image search over a strictly behavioral response
    corecore