2,638 research outputs found

    The AliEn system, status and perspectives

    Full text link
    AliEn is a production environment that implements several components of the Grid paradigm needed to simulate, reconstruct and analyse HEP data in a distributed way. The system is built around Open Source components, uses the Web Services model and standard network protocols to implement the computing platform that is currently being used to produce and analyse Monte Carlo data at over 30 sites on four continents. The aim of this paper is to present the current AliEn architecture and outline its future developments in the light of emerging standards.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 10 pages, Word, 10 figures. PSN MOAT00

    Redefining the boundaries of interplanetary coronal mass ejections from observations at the ecliptic plane

    Get PDF
    On 2015 January 6-7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss on the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries' process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.Comment: 9 pages and 7 figures in the original forma

    A Carrington-like geomagnetic storm observed in the 21st century

    Get PDF
    In September 1859 the Colaba observatory measured the most extreme geomagnetic disturbance ever recorded at low latitudes related to solar activity: the Carrington storm. This paper describes a geomagnetic disturbance case with a profile extraordinarily similar to the disturbance of the Carrington event at Colaba: the event on 29 October 2003 at Tihany magnetic observatory in Hungary. The analysis of the H-field at different locations during the "Carrington-like" event leads to a re-interpretation of the 1859 event. The major conclusions of the paper are the following: (a) the global Dst or SYM-H, as indices based on averaging, missed the largest geomagnetic disturbance in the 29 October 2003 event and might have missed the 1859 disturbance, since the large spike in the horizontal component (H) of terrestrial magnetic field depends strongly on magnetic local time (MLT); (b) the main cause of the large drop in H recorded at Colaba during the Carrington storm was not the ring current but field-aligned currents (FACs), and (c) the very local signatures of the H-spike imply that a Carrington-like event can occur more often than expected.Comment: 18 pages, 2 figures, accepted for publication in SWS

    Enhancing thermoelectric properties of graphene quantum rings

    Get PDF
    We study the thermoelectric properties of rectangular graphene rings connected symmetrically or asymmetrically to the leads. A side-gate voltage applied across the ring allows for the precise control of the electric current flowing through the system. The transmission coefficient of the rings manifests Breit-Wigner line-shapes and/or Fano line-shapes, depending on the connection configuration, the width of nanoribbons forming the ring and the side-gate voltage. We find that the thermopower and the figure of merit are greatly enhanced when the chemical potential is tuned close to resonances. Such enhancement is even more pronounced in the vicinity of Fano like anti-resonances which can be induced by a side-gate voltage independently of the geometry. This opens a possibility to use the proposed device as a tunable thermoelectric generator.Comment: 6 pages, 5 figures, accepted for publication in Physical Review

    Supergranular-scale magnetic flux emergence beneath an unstable filament

    Get PDF
    Here we report evidence of a large solar filament eruption on 2013, September 29. This smooth eruption, which passed without any previous flare, formed after a two-ribbon flare and a coronal mass ejection towards Earth. The coronal mass ejection generated a moderate geomagnetic storm on 2013, October 2 with very serious localized effects. The whole event passed unnoticed to flare-warning systems. We have conducted multi-wavelength analyses of the Solar Dynamics Observatory through Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data. The AIA data on 304, 193, 211, and 94 \AA sample the transition region and the corona, respectively, while HMI provides photospheric magnetograms, continuum, and linear polarization data, in addition to the fully inverted data provided by HMI. [...] We have observed a supergranular-sized emergence close to a large filament in the boundary of the active region NOAA11850. Filament dynamics and magnetogram results suggest that the magnetic flux emergence takes place in the photospheric level below the filament. Reconnection occurs underneath the filament between the dipped lines that support the filament and the supergranular emergence. The very smooth ascent is probably caused by this emergence and torus instability may play a fundamental role, which is helped by the emergence.Comment: 9 pages, 6 figures, online material at Journa

    Stochastic dynamics of macromolecular-assembly networks

    Get PDF
    The formation and regulation of macromolecular complexes provides the backbone of most cellular processes, including gene regulation and signal transduction. The inherent complexity of assembling macromolecular structures makes current computational methods strongly limited for understanding how the physical interactions between cellular components give rise to systemic properties of cells. Here we present a stochastic approach to study the dynamics of networks formed by macromolecular complexes in terms of the molecular interactions of their components. Exploiting key thermodynamic concepts, this approach makes it possible to both estimate reaction rates and incorporate the resulting assembly dynamics into the stochastic kinetics of cellular networks. As prototype systems, we consider the lac operon and phage lambda induction switches, which rely on the formation of DNA loops by proteins and on the integration of these protein-DNA complexes into intracellular networks. This cross-scale approach offers an effective starting point to move forward from network diagrams, such as those of protein-protein and DNA-protein interaction networks, to the actual dynamics of cellular processes.Comment: Open Access article available at http://www.nature.com/msb/journal/v2/n1/full/msb4100061.htm

    Conservation Laws in Smooth Particle Hydrodynamics: the DEVA Code

    Full text link
    We describe DEVA, a multistep AP3M-like-SPH code particularly designed to study galaxy formation and evolution in connection with the global cosmological model. This code uses a formulation of SPH equations which ensures both energy and entropy conservation by including the so-called \bn h terms. Particular attention has also been paid to angular momentum conservation and to the accuracy of our code. We find that, in order to avoid unphysical solutions, our code requires that cooling processes must be implemented in a non-multistep way. We detail various cosmological simulations which have been performed to test our code and also to study the influence of the \bn h terms. Our results indicate that such correction terms have a non-negligible effect on some cosmological simulations, especially on high density regions associated either to shock fronts or central cores of collapsed objects. Moreover, they suggest that codes paying a particular attention to the implementation of conservation laws of physics at the scales of interest, can attain good accuracy levels in conservation laws with limited computational resources.Comment: 36 pages, 10 figures. Accepted for publication in The Astrophysical Journa
    • 

    corecore