13 research outputs found
A New Immunoglobulin-Binding Protein, EibG, Is Responsible for the Chain-Like Adhesion Phenotype of Locus of Enterocyte Effacement-Negative, Shiga Toxin-Producing Escherichia coli
Shiga toxin-producing Escherichia coli (STEC) are important enteropathogens causing severe diseases such as hemorrhagic colitis and hemolytic-uremic syndrome in humans. The majority of STEC strains of serogroups O157, O26, or O111 associated with severe cases of these diseases possess a pathogenicity island termed the locus of enterocyte effacement (LEE). LEE, which is responsible for the formation of attaching-and-effacing lesions on intestinal epithelial cells, is important for the full virulence of STEC. Nonetheless, LEE-negative STEC strains have repeatedly been reported to be associated with severe diseases in humans. In this study, we characterized adhesion to cultured epithelial cells of certain LEE-negative STEC isolated from humans with or without bloody diarrhea. Several LEE-negative STEC belonging to serogroup O91 showed an unusual, chain-like adhesion pattern to HEp-2 cells. Using Tn5-based transposon mutagenesis, we identified the gene essential for the chain-like adhesion phenotype of this O91 STEC strain. Sequence analysis of the Tn5-inserted allele identified a novel chromosomal open reading frame (ORF) encoding a polypeptide with a high degree of similarity to the E. coli immunoglobulin-binding (Eib) proteins EibA, -C, -D, -E, and -F. Therefore, the ORF was designated EibG. Laboratory E. coli strain MC4100 transformed with a multicopy plasmid carrying eibG showed chain-like adhesion to HEp-2 cells, and whole-cell lysates of the strain bound to human-derived immunoglobulin G (IgG) Fc and IgA. These results indicate that EibG acts as an IgG Fc- and IgA-binding protein, as well as an adhesin of LEE-negative STEC
The GrlR-GrlA Regulatory System Coordinately Controls the Expression of Flagellar and LEE-Encoded Type III Protein Secretion Systems in Enterohemorrhagic Escherichia coli
The gene function of the locus of enterocyte effacement (LEE) is essential for full virulence of enterohemorrhagic Escherichia coli (EHEC). Strict control of LEE gene expression is mediated by the coordinated activities of several regulatory elements. We previously reported that the ClpX/ClpP protease positively controls LEE expression by down-regulating intracellular levels of GrlR, a negative regulator of LEE gene expression. We further revealed that the negative effect of GrlR on LEE expression was mediated through GrlA, a positive regulator of LEE expression. In this study, we found that the FliC protein, a major component of flagellar filament, was overproduced in clpXP mutant EHEC, as previously reported for Salmonella. We further found that FliC expression was reduced in a clpXP grlR double mutant. To determine the mediators of this phenotype, FliC protein levels in wild-type, grlR, grlA, and grlR grlA strains were compared. Steady-state levels of FliC protein were reduced only in the grlR mutant, suggesting that positive regulation of FliC expression by GrlR is mediated by GrlA. Correspondingly, cell motility was also reduced in the grlR mutant, but not in the grlA or grlR grlA mutant. Because overexpression of grlA from a multicopy plasmid strongly represses the FliC level, as well as cell motility, we conclude that GrlA acts as a negative regulator of flagellar-gene expression. The fact that an EHEC strain constitutively expressing FlhD/FlhC cannot adhere to HeLa cells leads us to hypothesize that GrlA-dependent repression of the flagellar regulon is important for efficient cell adhesion of EHEC to host cells
Autofluorescence Imaging Reflects the Nuclear Enlargement of Tumor Cells as well as the Cell Proliferation Ability and Aberrant Status of the p53, Ki-67, and p16 Genes in Colon Neoplasms
Background: Autofluorescence imaging (AFI) is useful for diagnosing colon neoplasms, but what affects the AFI intensity remains unclear. This study investigated the association between AFI and the histological characteristics, aberrant methylation status, and aberrant expression in colon neoplasms. Methods: Fifty-three patients with colorectal neoplasms who underwent AFI were enrolled. The AFI intensity (F index) was compared with the pathological findings and gene alterations. The F index was calculated using an image analysis software program. The pathological findings were assessed by the tumor crypt density, cell densities, and N/C ratio. The aberrant methylation of p16, E-cadherin, Apc, Runx3, and hMLH1 genes was determined by a methylation-specific polymerase chain reaction. The aberrant expression of p53 and Ki-67 was evaluated by immunohistochemical staining. Results: An increased N/C ratio, the aberrant expression of p53, Ki-67, and the altered methylation of p16 went together with a lower F index. The other pathological findings and the methylation status showed no association with the F index. Conclusions: AFI reflects the nuclear enlargement of tumor cells, the cell proliferation ability, and the altered status of cell proliferation-related genes, indicating that AFI is a useful and practical method for predicting the dysplastic grade of tumor cells and cell proliferation
Coordinate Control of the Locus of Enterocyte Effacement and Enterohemolysin Genes by Multiple Common Virulence Regulators in Enterohemorrhagic Escherichia coli ▿
The locus of enterocyte effacement (LEE) pathogenicity island is required for the intimate adhesion of enterohemorrhagic Escherichia coli (EHEC) to the intestinal epithelial cells. GrlR and GrlA are LEE-encoded negative and positive regulators, respectively. The interaction of these two regulators is important for controlling the transcription of LEE genes through Ler, a LEE-encoded central activator for the LEE. The GrlR-GrlA regulatory system controls not only LEE but also the expression of the flagellar and enterohemolysin (Ehx) genes in EHEC. Since Ehx levels were markedly induced in a grlR mutant but not in a grlR grlA double mutant and significantly increased by overexpression of GrlA in a ler mutant, GrlA is responsible for this regulation (T. Saitoh et al., J. Bacteriol. 190:4822-4830, 2008). In this study, additional investigations of the regulation of ehx gene expression determined that Ler also acts as an activator for Ehx expression without requiring GrlA function. We recently reported that the LysR-type regulator LrhA positively controls LEE expression (N. Honda et al., Mol. Microbiol. 74:1393-1411, 2009). The hemolytic activity of the lrhA mutant strain of EHEC was lower than that of the wild-type strain, and LrhA markedly induced ehx transcription in an E. coli K-12 strain, suggesting that LrhA also activates the transcription of ehx without GrlA and Ler. Gel mobility shift assays demonstrated that Ler and LrhA directly bind to the regulatory region of ehxC. Together, these results indicate that transcription of ehx is positively regulated by Ler, GrlA, and LrhA, which all act as positive regulators for LEE expression