144 research outputs found

    Prenatal Irradiation-Induced Hippocampal Abnormalities in Rats Evaluated Using Manganese-Enhanced MRI

    Get PDF
    The aim of this study was to characterize hippocampal abnormalities in rats after prenatal x-ray irradiation using manganese-enhanced MRI (MEMRI). All radiation-exposed rat brains showed a reduced volume with prominent dilatation of lateral ventricles. Moreover, MEMRI-enhanced areas within the hippocampus were reduced in volumes by approximately 25% of controls, although the entire volume of hippocampus was decreased by approximately 50% of controls. MEMRI signals were enhanced strongly in the hilus and granular layer of the dentate gyrus (DG) and the pyramidal layer and infrapyramidal region of the CA3 region, and moderately along the CA1/2 pyramidal cell layer in the control rats. In radiation-exposed rats, MEMRI signals in the CA1/2 regions disappeared due to disrupting their laminar organization, although strong MEMRI signals were sustained in the DG and CA3 regions. Histopathological examinations in radiation-exposed rats revealed disorganizations of the DG granule cell layer and the CA3 pyramidal cell layer with reducing the cell density. The CA1/2 pyramidal cell layer was disrupted by invading ectopic cell mass. Neural cell adhesion molecule (NCAM)-positive fiber bundles were sustained in radiation-exposed rats, although they distributed aberrantly in the suprapyramidal CA3 region with a slight reduction of NCAM staining. Furthermore, glial components consisted largely by astrocytes and minor by microglia were densely distributed in the DG rather than in other hippocampal regions, and their density radiation-exposed rats. In conclusion, MEMRI signal enhancements could delineate different neuronal and/or glial components among hippocampal regions. We characterized microstructures of the deformed hippocampus as well as its macrostructures in a prenatally radiation-exposed rat model using in vivo MEMRI. The present findings provide advantageous information for detecting nondestructively hippocampal deformations in neurodevelopmental disorders

    Three-body Coulomb breakup of 11Li in the complex scaling method

    Full text link
    Coulomb breakup strengths of 11Li into a three-body 9Li+n+n system are studied in the complex scaling method. We decompose the transition strengths into the contributions from three-body resonances, two-body ``10Li+n'' and three-body ``9Li+n+n'' continuum states. In the calculated results, we cannot find the dipole resonances with a sharp decay width in 11Li. There is a low energy enhancement in the breakup strength, which is produced by both the two- and three-body continuum states. The enhancement given by the three-body continuum states is found to have a strong connection to the halo structure of 11Li. The calculated breakup strength distribution is compared with the experimental data from MSU, RIKEN and GSI.Comment: RevTeX4, 6 pages, 4 figures, Accepted to Phys. Lett. B DOI

    Cytotoxic T Lymphocytes Regenerated from iPS Cells Have Therapeutic Efficacy in a Patient-Derived Xenograft Solid Tumor Model

    Get PDF
    Current adoptive T cell therapies conducted in an autologous setting are costly, time consuming, and depend on the quality of the patient's T cells. To address these issues, we developed a strategy in which cytotoxic T lymphocytes (CTLs) are regenerated from iPSCs that were originally derived from T cells and succeeded in regenerating CTLs specific for the WT1 antigen, which exhibited therapeutic efficacy in a xenograft model of leukemia. In this study, we extended our strategy to solid tumors. The regenerated WT1-specific CTLs had a strong therapeutic effect in orthotopic xenograft model using a renal cell carcinoma (RCC) cell line. To make our method more generally applicable, we developed an allogeneic approach by transducing HLA-haplotype homozygous iPSCs with WT1-specific TCR α/β genes that had been tested clinically. The regenerated CTLs antigen-specifically suppressed tumor growth in a patient-derived xenograft model of RCC, demonstrating the feasibility of our strategy against solid tumors

    Spatial Frequency-Based Analysis of Mean Red Blood Cell Speed in Single Microvessels: Investigation of Microvascular Perfusion in Rat Cerebral Cortex

    Get PDF
    BACKGROUND: Our previous study has shown that prenatal exposure to X-ray irradiation causes cerebral hypo-perfusion during the postnatal development of central nervous system (CNS). However, the source of the hypo-perfusion and its impact on the CNS development remains unclear. The present study developed an automatic analysis method to determine the mean red blood cell (RBC) speed through single microvessels imaged with two-photon microscopy in the cerebral cortex of rats prenatally exposed to X-ray irradiation (1.5 Gy). METHODOLOGY/PRINCIPAL FINDINGS: We obtained a mean RBC speed (0.9±0.6 mm/sec) that ranged from 0.2 to 4.4 mm/sec from 121 vessels in the radiation-exposed rats, which was about 40% lower than that of normal rats that were not exposed. These results were then compared with the conventional method for monitoring microvascular perfusion using the arteriovenous transit time (AVTT) determined by tracking fluorescent markers. A significant increase in the AVTT was observed in the exposed rats (1.9±0.6 sec) as compared to the age-matched non-exposed rats (1.2±0.3 sec). The results indicate that parenchyma capillary blood velocity in the exposed rats was approximately 37% lower than in non-exposed rats. CONCLUSIONS/SIGNIFICANCE: The algorithm presented is simple and robust relative to monitoring individual RBC speeds, which is superior in terms of noise tolerance and computation time. The demonstrative results show that the method developed in this study for determining the mean RBC speed in the spatial frequency domain was consistent with the conventional transit time method

    Experimentelle Untersuchungen über Nekrose, Erweichung und Organisation an der Hirnrinde des Kaninchens

    No full text
    corecore