22 research outputs found

    Few-cycle laser driven reaction nanoscopy on aerosolized silica nanoparticles

    Get PDF
    Nanoparticles offer unique properties as photocatalysts with large surface areas. Under irradiation with light, the associated near-fields can induce, enhance, and control molecular adsorbate reactions on the nanoscale. So far, however, there is no simple method available to spatially resolve the near-field induced reaction yield on the surface of nanoparticles. Here we close this gap by introducing reaction nanoscopy based on three-dimensional momentum-resolved photoionization. The technique is demonstrated for the spatially selective proton generation in few-cycle laser-induced dissociative ionization of ethanol and water on SiO2 nanoparticles, resolving a pronounced variation across the particle surface. The results are modeled and reproduced qualitatively by electrostatic and quasi-classical mean-field Mie Monte-Carlo (M3C) calculations. Reaction nanoscopy is suited for a wide range of isolated nanosystems and can provide spatially resolved ultrafast reaction dynamics on nanoparticles, clusters, and droplets

    Few-cycle laser driven reaction nanoscopy on aerosolized silica nanoparticles

    Get PDF
    Nanoparticles offer unique properties as photocatalysts with large surface areas. Under irradiation with light, the associated near-fields can induce, enhance, and control molecular adsorbate reactions on the nanoscale. So far, however, there is no simple method available to spatially resolve the near-field induced reaction yield on the surface of nanoparticles. Here we close this gap by introducing reaction nanoscopy based on three-dimensional momentum-resolved photoionization. The technique is demonstrated for the spatially selective proton generation in few-cycle laser-induced dissociative ionization of ethanol and water on SiO2 nanoparticles, resolving a pronounced variation across the particle surface. The results are modeled and reproduced qualitatively by electrostatic and quasi-classical mean-field Mie Monte-Carlo ((MC)-C-3) calculations. Reaction nanoscopy is suited for a wide range of isolated nanosystems and can provide spatially resolved ultrafast reaction dynamics on nanoparticles, clusters, and droplets

    Experimental verification of selection rules for circularly polarized high harmonics from a solid

    No full text
    We experimentally verify selection rules for circularly polarized high harmonics from solids by using single-color circularly polarized mid-infrared pulses. Our result offers a novel way to produce circularly polarized, coherent short-wavelength light

    Experimental verification of selection rules for circularly polarized high harmonics from a solid

    Get PDF
    We experimentally verify selection rules for circularly polarized high harmonics from solids by using single-color circularly polarized mid-infrared pulses. Our result offers a novel way to produce circularly polarized, coherent short-wavelength light
    corecore