2,314 research outputs found
Oxidation of DJ-1 Induced by 6-Hydroxydopamine Decreasing Intracellular Glutathione
DJ-1, the causative gene of a familial form of Parkinson's disease (PD), has been reported to undergo preferential oxidation of the cysteine residue at position 106 (Cys-106) under oxidative stress; however, details of the molecular mechanisms are not well known. In the present study, mechanisms of DJ-1 oxidation induced by 6-hydroxydopamine (6-OHDA) were investigated by using SH-SY5Y cells. The treatment of these cells with 6-OHDA caused an obvious acidic spot sift of DJ-1 due to its oxidation. However, when catalase, which is an hydrogen peroxide (H2O2)-removing enzyme, was added during the treatment, it failed to prevent the oxidation induced by 6-OHDA, suggesting that electrophilic p-quinone formed from 6-OHDA, but not H2O2, was responsible for the DJ-1 oxidation. Benzoquinone, another electrophilic p-quinone, also induced DJ-1 oxidation. The intracellular glutathione (GSH) levels were significantly decreased by 6-OHDA, irrespective of the presence or absence of catalase. The inhibition of GSH synthesis by buthionine sulfoximine resulted in a decrease in GSH levels and enhancement of DJ-1 oxidation. The pretreatment of cells with N-acetyl-cysteine prevented the loss of intracellular GSH and subsequently DJ-1 oxidation induced by 6-OHDA. Collectively, these results suggest that electrophilic p-quinone formed from 6-OHDA induces DJ-1 oxidation by decreasing intracellular GSH
Skin advanced glycation end product accumulation and muscle strength among adult men
Aging is associated with decreased skeletal muscle function. Increased levels of advanced glycation end products (AGEs) in skeletal muscle tissue are observed with advancing age and in diabetes. Although serum AGE level is negatively associated with grip strength in elderly people, it is unknown whether this association is present in adult males. To determine the relationship between AGE accumulation in tissue and muscle strength and power among Japanese adult men. Skin autofluorescence (AF) (a noninvasive method for measuring tissue AGEs), grip strength (n = 232), and leg extension power (n = 138) were measured in Japanese adult men [median (interquartile range) age, 46.0 (37.0, 56.0) years]. After adjustment for potential confounders, the adjusted means [95% confidence interval (CI)] for grip strength across the tertiles of skin AF were 44.5 (43.2, 45.9) kg for the lowest tertile, 42.0 (40.6, 43.3) kg for the middle tertile, and 41.7 (40.3, 43.1) kg for the highest tertile (P for trend < 0.01). Moreover, the adjusted geometric means (95% CI) of leg extension power across the tertiles of skin AF were 17.8 (16.6, 19.1) W/kg for the lowest tertile, 17.5 (16.4, 18.7) W/kg for the middle tertile, and 16.0 (14.9, 17.1) W/kg for the highest tertile (P for trend = 0.04). Among Japanese adult men, participants with higher skin AF had lower muscle strength and power, indicating a relationship between AGE accumulation and muscle strength and power. A long-term prospective study is required to clarify the causality
In Silico Analysis of the Apolipoprotein E and the Amyloid β Peptide Interaction: Misfolding Induced by Frustration of the Salt Bridge Network
The relationship between Apolipoprotein E (ApoE) and the aggregation processes of the amyloid β (Aβ) peptide has been shown to be crucial for Alzheimer's disease (AD). The presence of the ApoE4 isoform is considered to be a contributing risk factor for AD. However, the detailed molecular properties of ApoE4 interacting with the Aβ peptide are unknown, although various mechanisms have been proposed to explain the physiological and pathological role of this relationship. Here, computer simulations have been used to investigate the process of Aβ interaction with the N-terminal domain of the human ApoE isoforms (ApoE2, ApoE3 and ApoE4). Molecular docking combined with molecular dynamics simulations have been undertaken to determine the Aβ peptide binding sites and the relative stability of binding to each of the ApoE isoforms. Our results show that from the several ApoE isoforms investigated, only ApoE4 presents a misfolded intermediate when bound to Aβ. Moreover, the initial α-helix used as the Aβ peptide model structure also becomes unstructured due to the interaction with ApoE4. These structural changes appear to be related to a rearrangement of the salt bridge network in ApoE4, for which we propose a model. It seems plausible that ApoE4 in its partially unfolded state is incapable of performing the clearance of Aβ, thereby promoting amyloid forming processes. Hence, the proposed model can be used to identify potential drug binding sites in the ApoE4-Aβ complex, where the interaction between the two molecules can be inhibited
The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura
Abstract
We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis
Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser
Gisbert Winnewisser's astronomical career was practically coextensive with
the whole development of molecular radio astronomy. Here I would like to pick
out a few of his many contributions, which I, personally, find particularly
interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter
Astronomy Group. To appear in the Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies"
eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer:
Berlin
Human first-trimester chorionic villi have a myogenic potential
First-trimester chorionic-villi-derived cells (FTCVs) are the earliest fetal material that can be obtained for prenatal diagnosis of fetal disorders such as Duchenne muscular dystrophy (DMD). DMD is a devastating X-linked disorder characterized by the absence of dystrophin at the sarcolemma of muscle fibers. Currently, a limited number of treatment options are available for DMD, although cell therapy is a promising treatment strategy for muscle degeneration in DMD patients. A novel candidate source of cells for this approach is FTCVs taken between the 9th and 11th weeks of gestation. FTCVs might have a higher undifferentiated potential than any other tissue-derived cells because they are the earliest fetal material. We examined the expression of mesenchymal stem cell and pluripotent stem cell markers in FTCVs, in addition to their myogenic potential. FTCVs expressed mesenchymal stem cell markers and Nanog and Sox2 transcription factors as pluripotent stem cell markers. These cells efficiently differentiated into myotubes after myogenic induction, at which point Nanog and Sox2 were down-regulated, whereas MyoD, myogenin, desmin and dystrophin were up-regulated. To our knowledge, this is the first demonstration that FTCVs can be efficiently directed to differentiate in vitro into skeletal muscle cells that express dystrophin as the last stage marker of myogenic differentiation. The myogenic potential of FTCVs reveals their promise for use in cell therapy for DMD, for which no effective treatment presently exists
Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration.We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life.Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation.Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models
Ferromagnetic Semiconductors: Moving Beyond (Ga,Mn)As
The recent development of MBE techniques for growth of III-V ferromagnetic
semiconductors has created materials with exceptional promise in spintronics,
i.e. electronics that exploit carrier spin polarization. Among the most
carefully studied of these materials is (Ga,Mn)As, in which meticulous
optimization of growth techniques has led to reproducible materials properties
and ferromagnetic transition temperatures well above 150 K. We review progress
in the understanding of this particular material and efforts to address
ferromagnetic semiconductors as a class. We then discuss proposals for how
these materials might find applications in spintronics. Finally, we propose
criteria that can be used to judge the potential utility of newly discovered
ferromagnetic semiconductors, and we suggest guidelines that may be helpful in
shaping the search for the ideal material.Comment: 37 pages, 4 figure
Shorter Food Chain Length in Ancient Lakes: Evidence from a Global Synthesis
Food webs may be affected by evolutionary processes, and effective evolutionary time ultimately affects the probability of species evolving to fill the niche space. Thus, ecosystem history may set important evolutionary constraints on community composition and food web structure. Food chain length (FCL) has long been recognized as a fundamental ecosystem attribute. We examined historical effects on FCL in large lakes spanning >6 orders of magnitude in age. We found that food chains in the world’s ancient lakes (n = 8) were significantly shorter than in recently formed lakes (n = 10) and reservoirs (n = 3), despite the fact that ancient lakes harbored much higher species richness, including many endemic species. One potential factor leading to shorter FCL in ancient lakes is an increasing diversity of trophic omnivores and herbivores. Speciation could simply broaden the number of species within a trophic group, particularly at lower trophic levels and could also lead to a greater degree of trophic omnivory. Our results highlight a counter-intuitive and poorly-understood role of evolutionary history in shaping key food web properties such as FCL
- …