17,910 research outputs found
Disturbances of both cometary and Earth's magnetospheres excited by single solar flares
In the solar wind a comet plays the role of a windvane that moves three-dimensionally in the heliomagnetosphere. Among the solar systems bodies, only comets have a wide range of inclination angles of their orbital planes to the ecliptic plane ranging from 0 to 90 deg. Therefore, observations of cometary plasma tails are useful in probing the heliomagnetospheric conditions in the high heliolatitudinal region. A comet can be compared to a polar-orbiting probe encircling the Sun. We will introduce two rare cases in which the magnetospheres of both the comet and the Earth are disturbed by a single solar flare
Gap opening in graphene by simple periodic inhomogeneous strain
Using ab-initio methods, we show that the uniform deformation either leaves
graphene (semi)metallic or opens up a small gap yet only beyond the mechanical
breaking point of the graphene, contrary to claims in the literature based on
tight-binding (TB) calculations. It is possible, however, to open up a global
gap by a sine-like one-dimensional inhomogeneous deformation applied along any
direction but the armchair one, with the largest gap for the corrugation along
the zigzag direction (~0.5 eV) without any electrostatic gating. The gap
opening has a threshold character with very sharp rise when the ratio of the
amplitude A and the period of the sine wave deformation lambda exceeds
(A/lambda)_c ~0.1 and the inversion symmetry is preserved, while it is
threshold-less when the symmetry is broken, in contrast with TB-derived
pseudo-magnetic field models.Comment: 6 pages, 6 figures; (v2) added figures illustrating opening gap in
Graphene mesh on BN, expanded analysis illustrating absence of
pseudo-magnetic fields in deformed Graphen
Gluon propagators and center vortices at finite temperature
We study influence of center vortices on infrared properties of gluons in the
deconfinement phase of quenched QCD. We observe a significant suppression of
the magnetic component of the gluon propagator in the low-momentum region after
the vortices are removed from the gluon configurations. The propagator of the
electric gluon stays almost unaffected by the vortex removal. Our results
demonstrate that the center vortices are responsible for important
nonperturbative properties of the magnetic component of the quark-gluon plasma.Comment: 7 pages, 8 figures, talk presented at 27th International Symposium on
Lattice Field Theory (Lattice 2009), Beijing, 26-31 Jul 200
Finite-dimensional analogs of string s <-> t duality and pentagon equation
We put forward one of the forms of functional pentagon equation (FPE), known
from the theory of integrable models, as an algebraic explanation to the
phenomenon known in physics as st duality. We present two simple geometrical
examples of FPE solutions, one of them yielding in a particular case the
well-known Veneziano expression for 4-particle amplitude. Finally, we interpret
our solutions of FPE in terms of relations in Lie groups.Comment: LaTeX, 12 pages, 6 eps figure
Thermal evolution of the Schwinger model with Matrix Product Operators
We demonstrate the suitability of tensor network techniques for describing
the thermal evolution of lattice gauge theories. As a benchmark case, we have
studied the temperature dependence of the chiral condensate in the Schwinger
model, using matrix product operators to approximate the thermal equilibrium
states for finite system sizes with non-zero lattice spacings. We show how
these techniques allow for reliable extrapolations in bond dimension, step
width, system size and lattice spacing, and for a systematic estimation and
control of all error sources involved in the calculation. The reached values of
the lattice spacing are small enough to capture the most challenging region of
high temperatures and the final results are consistent with the analytical
prediction by Sachs and Wipf over a broad temperature range.Comment: 6 pages, 11 figure
Selective transmission of Dirac electrons and ballistic magnetoresistance of \textit{n-p} junctions in graphene
We show that an electrostatically created n-p junction separating the
electron and hole gas regions in a graphene monolayer transmits only those
quasiparticles that approach it almost perpendicularly to the n-p interface.
Such a selective transmission of carriers by a single n-p junction would
manifest itself in non-local magnetoresistance effect in arrays of such
junctions and determines the unusual Fano factor in the current noise universal
for the n-p junctions in graphene.Comment: 4 pages, 2 fig
Ground-state energy of the electron liquid in ultrathin wires
The ground-state energy and the density correlation function of the electron
liquid in a thin one-dimensional wire are computed. The calculation is based on
an approximate mapping of the problem with a realistic Coulomb interaction law
onto exactly solvable models of mathematical physics. This approach becomes
asymptotically exact in the limit of small wire radius but remains numerically
accurate even for modestly thin wires.Comment: (v3) Replaced with the published version. 4 pages, 1 figur
Stochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking
Stochastic aspects of chemical reaction models related to the Soai reactions
as well as to the homochirality in life are studied analytically and
numerically by the use of the master equation and random walk model. For
systems with a recycling process, a unique final probability distribution is
obtained by means of detailed balance conditions. With a nonlinear
autocatalysis the distribution has a double-peak structure, indicating the
chiral symmetry breaking. This problem is further analyzed by examining
eigenvalues and eigenfunctions of the master equation. In the case without
recycling process, final probability distributions depend on the initial
conditions. In the nonlinear autocatalytic case, time-evolution starting from a
complete achiral state leads to a final distribution which differs from that
deduced from the nonzero recycling result. This is due to the absence of the
detailed balance, and a directed random walk model is shown to give the correct
final profile. When the nonlinear autocatalysis is sufficiently strong and the
initial state is achiral, the final probability distribution has a double-peak
structure, related to the enantiomeric excess amplification. It is argued that
with autocatalyses and a very small but nonzero spontaneous production, a
single mother scenario could be a main mechanism to produce the homochirality.Comment: 25 pages, 6 figure
Chaotic Transport in the Symmetry Crossover Regime with a Spin-orbit Interaction
We study a chaotic quantum transport in the presence of a weak spin-orbit
interaction. Our theory covers the whole symmetry crossover regime between
time-reversal invariant systems with and without a spin-orbit interaction. This
situation is experimentally realizable when the spin-orbit interaction is
controlled in a conductor by applying an electric field. We utilize a
semiclassical approach which has recently been developed. In this approach, the
non-Abelian nature of the spin diffusion along a classical trajectory plays a
crucial role. New analytical expressions with one crossover parameter are
semiclassically derived for the average conductance, conductance variance and
shot noise. Moreover numerical results on a random matrix model describing the
crossover from the GOE (Gaussian Orthogonal Ensemble) to the GSE (Gaussian
Symplectic Ensemble) are compared with the semiclassical expressions.Comment: 13 pages, 7 figure
- …