28,130 research outputs found

    Ceramic powder for sintering materials

    Get PDF
    Surface activity of ceramic powders such as MgO and Al2O3, for use in sintering with sp. emphasis on their particle size, shape, particle size distribution, packing, and coexisting additives and impurities are reviewed

    Properties of Color-Coulomb String Tension

    Get PDF
    We study the properties of the color-Coulomb string tension obtained from the instantaneous part of gluon propagators in Coulomb gauge using quenched SU(3) lattice simulation. In the confinement phase, the dependence of the color-Coulomb string tension on the QCD coupling constant is smaller than that of the Wilson loop string tension. On the other hand, in the deconfinement phase, the color-Coulomb string tension does not vanish even for T/Tc=15T/T_c = 1 \sim 5, the temperature dependence of which is comparable with the magnetic scaling, dominating the high temperature QCD. Thus, the color-Coulomb string tension is not an order parameter of QGP phase transition.Comment: 17 pages, 5 figures; one new figure added, typos corrected, version to appear in PR

    Quark-Meson Coupling Model for a Nucleon

    Get PDF
    The quark-meson coupling model for a nucleon is considered. The model describes a nucleon as an MIT bag, in which quarks are coupled to scalar and vector mesons. A set of coupled equations for the quark and the meson fields are obtained and are solved in a self-consistent way. It is shown that the mass of a nucleon as a dressed MIT bag interacting with sigma- and omega-meson fields significantly differs from the mass of a free MIT bag. A few sets of model parameters are obtained so that the mass of a dressed MIT bag becomes the nucleon mass. The results of our calculations imply that the self-energy of the bag in the quark-meson coupling model is significant and needs to be considered in doing the nuclear matter calculations.Comment: 3 figure

    Infrared behavior of the Faddeev-Popov operator in Coulomb gauge QCD

    Get PDF
    We calculate the eigenvalue distribution of the Faddeev-Popov operator in Coulomb gauge QCD using quenched SU(3) lattice simulation. In the confinement phase, the density of the low-lying eigenvalues increases with lattice volume, and the confinement criterion is satisfied. Moreover, even in the deconfinement phase, the behavior of the FP eigenvalue density is qualitatively the same as in the confinement phase. This is consistent with the fact that the color-Coulomb potential is not screened in the deconfined phase.Comment: 10 pages, 10 figure

    Scaling study of the gluon propagator in Coulomb gauge QCD on isotropic and anisotropic lattices

    Get PDF
    We calculate the transverse and time-time components of the instantaneous gluon propagator in Coulomb gauge QCD by using an SU(3) quenched lattice simulation on isotropic and anisotropic lattices. We find that the gluon propagators suffer from strong discretization effects on the isotropic lattice; on the other hand, those on the anisotropic lattices give a better scaling. Moreover, on these two type of lattices the transverse parts are significantly suppressed in the infrared region and have a turnover at about 500 [MeV]. The high resolution to the temporal direction due to the anisotropy yields small discretization errors for the time-time gluon propagators, which also show an infrared enhancement as expected in the Gribov-Zwanziger confinement scenario.Comment: 29 pages, 18 figure

    Injection and detection of spin in a semiconductor by tunneling via interface states

    Full text link
    Injection and detection of spin accumulation in a semiconductor having localized states at the interface is evaluated. Spin transport from a ferromagnetic contact by sequential, two-step tunneling via interface states is treated not in itself, but in parallel with direct tunneling. The spin accumulation induced in the semiconductor channel is not suppressed, as previously argued, but genuinely enhanced by the additional spin current via interface states. Spin detection with a ferromagnetic contact yields a weighted average of the spin accumulation in the channel and in the localized states. In the regime where the spin accumulation in the localized states is much larger than that in the channel, the detected spin signal is insensitive to the spin accumulation in the localized states and the ferromagnet probes the spin accumulation in the semiconductor channel.Comment: 7 pages, 2 figures. Theory onl

    Electronic States of Graphene Nanoribbons

    Full text link
    We study the electronic states of narrow graphene ribbons (``nanoribbons'') with zigzag and armchair edges. The finite width of these systems breaks the spectrum into an infinite set of bands, which we demonstrate can be quantitatively understood using the Dirac equation with appropriate boundary conditions. For the zigzag nanoribbon we demonstrate that the boundary condition allows a particle- and a hole-like band with evanescent wavefunctions confined to the surfaces, which continuously turn into the well-known zero energy surface states as the width gets large. For armchair edges, we show that the boundary condition leads to admixing of valley states, and the band structure is metallic when the width of the sample in lattice constant units is divisible by 3, and insulating otherwise. A comparison of the wavefunctions and energies from tight-binding calculations and solutions of the Dirac equations yields quantitative agreement for all but the narrowest ribbons.Comment: 5 pages, 6 figure

    Two-scale scalar mesons in nuclei

    Full text link
    We generalize the linear sigma model in order to develop a chiral-invariant model of nuclear structure. The model is natural, and contains not only the usual sigma meson which is the chiral partner of the pion but also a new chiral-singlet that is responsible for the medium-range nucleon-nucleon attraction. This approach provides significant advantages in terms of its description of nuclear matter and finite nuclei in comparison with conventional models based on the linear sigma model.Comment: 12 pages, including 3 tables and 3 figures; preprint number is adde

    Chirality Selection in Open Flow Systems and in Polymerization

    Full text link
    As an attempt to understand the homochirality of organic molecules in life, a chemical reaction model is proposed where the production of chiral monomers from achiral substrate is catalyzed by the polymers of the same enatiomeric type. This system has to be open because in a closed system the enhanced production of chiral monomers by enzymes is compensated by the associated enhancement in back reaction, and the chiral symmetry is conserved. Open flow without cross inhibition is shown to lead to the chirality selection in a general model. In polymerization, the influx of substrate from the ambience and the efflux of chiral products for purposes other than the catalyst production make the system necessarily open. The chiral symmetry is found to be broken if the influx of substrate lies within a finite interval. As the efficiency of the enzyme increases, the maximum value of the enantiomeric excess approaches unity so that the chirality selection becomes complete.Comment: 8 pages, 4 figure
    corecore